1、第12课时 等差数列一、选择题1若xy,两个等差数列x,a1,a2,y与x,b1,b2,b3,y的公差分别为d1和d2,则等于()A. B. C. D.解析:d1,d2.答案:C2an为等差数列,a1033,a21,Sn为数列an的前n项和,则S202S10等于()A40 B200 C400 D20解析:本题考查等差数列的运算S202S10210(a20a10)100d,又a10a28d,3318d,d4,S202S10400.答案:C3等差数列an中,a1a2a324,a18a19a2078,则此数列前20项和等于()A160 B180 C200 D220解析:a1a2a324,a18a19
2、a2078,a1a2a3a18a19a203(a1a20)54,S20180.答案:B4在各项均不为零的等差数列an中,若an1aan10(n2),则S2n14n等于()A2 B0 C1 D2解析:由得a2an0,又an0,an2,S2n14n2(2n1)4n2.答案:A二、填空题 5在数列an中,a11,a22,an2an1(1)n,那么S100的值等于_解析:本题考查数列通项公式的应用;据已知当n为奇数时,an2an0an1,当n为偶数时,an2an2ann,故an,故S100(246100)50502 600.答案:2 6006设数列an是公差不为零的等差数列,Sn是数列an的前n项和,
3、且S9S2,S44S2,则数列an的通项公式为_解析:设等差数列an的公差为d,由Snna1d及已知条件得(3a13d)29(2a1d)4a16d4(2a1d)由得d2a1,代入有aa1,解得a10或a1.当a10时,d0,舍去因此a1,d.故数列an的通项公式an(n1)(2n1)答案:an(2n1)7一个多边形的周长等于158 cm,所有各边的长成等差数列,最大边长等于44 cm,公差等于3 cm,则多边形的边数等于_解析:按从小到大的顺序各边的长构成的等差数列记为an,根据已知条件Snnand,即44n158,整理得:3n291n3160,解得:n4或n26(舍去)答案:4三、解答题8已
4、知数列an的前n项和为Sn,判断满足下列条件的数列是否是等差数列:(1)Snn2;(2)Snn2n1.解答:(1)当n1时,a1S11,当n2时,anSnSn1n2(n1)22n1,an2n1,(nN*)又an1an(2n1)(2n1)2,因此an成等差数列(2)当n1时,a1S13,当n2时,S27,a2S2S14,当n3时,S313,a3S3S26,a2a1a3a2.因此数列an不是等差数列9已知数列log2(an1)(nN*)为等差数列,且a13,a39.(1)求数列an的通项公式;(2)证明1.解答:(1)设等差数列log2(an1)的公差为d,则有d1,log2(an1)log2(a
5、11)n1n.则an2n1.(2)证明:an2n1,an1an(2n11)(2n1)2n.因此11.10. 已知数列an的前n项和为Sn,an0,a112,且满足Sn.试证明an为等差数列,并求an的通项公式证明:当n2时,Sn,Sn1,整理得:(anan12)(anan1)0,又an0,则anan120,即anan12,因此an为等差数列,ana12(n1)2n10.1已知ABC内有2 005个点,其中任意三点不共线,把这2 005个点加上ABC的三个顶点是2 008个顶点,组成互不相叠的小三角形,则一共可组成小三角形的个数为()A2 004 B2 009 C4 011 D4 013解析:如
6、图,在ABC内若有1,2,3点,则可组成小三角形的个数分别为3,5,7个,可观察出,若在ABC内有n个点,可组成小三角形的个数记为an,则an1an2,因此an为首项为a13,公差为d2的等差数列,a2 005a12 004d4 011.答案:C2在等差数列an中,公差d0,a2是a1与a4的等比中项,已知数列a1,a3,ak1,ak2,akn,成等比数列,求数列kn的通项kn.解答:解法一:等差数列an中,aa1a4,即(a1d)2a1(a13d),整理得d2a1d.又d0,a1d,ana1(n1)dnd.又a1,a3,ak1,ak2,akn,成等比数列q3,akna1(kn1)dknd,又akna13n13n1d,kn3n1.解法二:由已知条件aa1a4,即(a1d)2a1(a13d),整理得d2a1d,又d0,则a1d,因此ana1(n1)dnd,aknknd.又akn成等比数列,则,即,kn成等比数列,kn3n1.w.w.w.k.s.5.u.c.o.m