1、考前基础知识回扣1.已知f(x)为偶函数且f(x)dx8,则f(x)dx等于 ( ) A0 B4 C8 D162.设f(x)则f(x)d等于 ()A. B. C. D不存在3如图,函数yx22x1与y1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是 ()A1 B. C. D24.一质点运动时速度与时间的关系为v(t)t2t2,质点作直线运动,则此物体在时间内的位移为 ()A.B. C. D.5若1 N的力能使弹簧伸长1 cm,现在要使弹簧伸长10 cm,则需要花费的功为()A0.05 J B0.5 J C0.25 J D1 J6.若y(sintcostsint)dt,则y的最大值
2、是 ()A1 B2 C D07已知函数yx2与ykx(k0)的图象所围成的阴影部分(如图所示)的面积为,则k_.8如图,设点P从原点沿曲线yx2向点A(2,4)移动,记直线OP、曲线yx2及直线x2所围成的面积分别记为S1,S2,若S1S2,则点P的坐标为_9一辆汽车的速度时间曲线如图所示,则该汽车在这一分钟内行驶的路程为_米10.若f(x)是一次函数,且f(x)dx5,xf(x)dx,那么dx的值是_11计算以下定积分:(1) (2x2)dx;(2)()2dx;(3)(sinxsin2x)dx;12如图,设点P从原点沿曲线yx2向点A(2,4)移动,记直线OP、曲线yx2及直线x2所围成的面
3、积分别记为S1,S2,若S1S2,求点P的坐标13已知f(x)为二次函数,且f(1)2,f(0)0,f(x)dx 2.(1)求f(x)的解析式;(2)求f(x)在1,1上的最大值与最小值1.D解析:原式f(x)dxf(x)dx,原函数为偶函数,在y轴两侧的图象对称,对应的面积相等,即8216.2.C【解析】数形结合f(x)dx=x2dx+(2-x)dx=. 3.B解析:函数yx22x1与y1的两个交点为(0,1)和(2,1),所以闭合图形的面积等于(x22x11)dx(x22x)dx.4.D【解析】s(t2t2)dt(t3t22t)|.5.B【解析】设力Fkx(k是比例系数),当F1 N时,x
4、0.01 m,可解得k100 N/m,则F100x,所以W100xdx50x20.5 J.6.B【解析】y(sintcostsint)dt(sintsin2t)dt(costcos2t)cosxcos2xcosx(2cos2x1)cos2xcosx(cosx1)222.7.2【解析】直线方程与抛物线方程联立先求出积分区间为,再由(kxx2)dx ()求得k2. 8. (,)【解析】设直线OP的方程为ykx, P点的坐标为(x,y),则 (kxx2)dx(x2kx)dx,即(kx2x3)(x3kx2),解得kx2x32k(x3kx2),解得k,即直线OP的方程为yx,所以点P的坐标为(,)9.9
5、00米【解析】据题意,v与t的函数关系式如下:vv(t)所以该汽车在这一分钟内所行驶的路程为st2(50tt2)10t900米10. 43ln2【解析】f(x)是一次函数,设f(x)axb(a0),由(axb)dx5得(ax2bx)ab5, 由xf(x)dx得 (ax2bx)dx,即(ax3bx2) ,ab, 解得a4,b3,f(x)4x3,于是dxdx (4)dx(4x3lnx)83ln2443ln2.11.【解析】(1) (2x2)dx(x3lnx)ln 2ln 2.(2)()2dx(x2)dx(x2lnx2x)(ln 36)(2ln 24)ln.(3) (sinxsin2x)dx(cosxcos2x)()(1).12.【解析】设直线OP的方程为ykx, P点的坐标为(x,y),则(kxx2)dx(x2kx)dx,即(kx2x3)|(x3kx2)|,解得kx2x32k(x3kx2),解得k,即直线OP的方程为yx,所以点P的坐标为(,)13.【解析】(1)设f(x)ax2bxc(a0),则f(x)2axb.由f(1)2,f(0)0,得,即.f(x)ax2(2a)又f(x)dx ax2(2a)dxax3(2a)x|2a2.a6,c4.从而f(x)6x24.(2)f(x)6x24,x1,1,所以当x0时,f(x)min4;当x1时,f(x)max2.