1、高一数学(答)1数学参考答案及评分标准高一数学(答)2选择题:ADACACAABDBC填空题:13.1200,500,300(错一空不给分)14.1815.(2,5)16.-1,-78,-7解答题17.解:(1)A=x|3 x 7,B=x|1 x 6.2分 A B=x|1 x 7.4分(2)A B=B A B.5分当 A=时,即 a a2-2 时,符合题意,此时-1 a 2.6分当 A 时,a a2-2a 1a2-2 6.8分解得2 a 2 2.9分综上,a 的范围为a-1,2 2.10分18.解:(1)f(x)=0.5x ,0 x 26400.55x-132 ,2640 3720.6分(2)
2、1518元;.9分(3)3755度.12分19.解:(1)当 k=1时,原不等式可化为-x-2 0,解得 x(-,-2).2分(2)当 k 1时,原不等式可化为(k-1)x-k(x+2)0.4分若 k 23 时,x(-2 ,kk-1 ).6分若 k=23 时,x .8分若 23 k 1时,x(-,-2)(kk-1,+).12分综上所述,当 k=1时,原不等式的解集为x|x -2当 k 23 时,原不等式的解集为x|-2 x kk-1当 k=23 时,原不等式的解集为 当 23 k 1时,原不等式的解集为x|kk-1 x 1时,原不等式的解集为x|x kk-1 20.解:解方程组得x=2y=1z
3、=3.3分 2a+b+3c=1 12a+4b+3c=(2a+b+3c)(12a+4b+3c).6分=14+(b2a+8ab)+(3c2a+6ac)+(12cb+3bc)14+4+6+12=36 12a+4b+3c 36当且仅当 a=112 ,b=13 ,c=16 时,等号成立.12分21.解:(1)定义域:(-,0)(0,+).2分(2)因为 f(-x)=1(-x)2+(-x)216=1x2+x216=f(x),所以 f(x)偶函数.4分(3)利用定义证明:只需证明 x1,x2(0,+)时的情况即可,设 x1,x2(0,+)且 x1 x2yx=1x22+x2216-1x12-x1216x2-x
4、1=(x1+x2)(116-1(x1x2)2)(x1+x2)(x1x2)2-1616(x1x2)2当 x1,x2(0,2)时,yx 0所以,f(x)在(-,-2)和(0,2)上单调递减;在(-2,0)和(2,+)上单调递增.8分值域为:12,+).10分.12分高一数学(答)12019 2020 学 年 度 上 学 期 期 中 考 试 高 一 试 题数学参考答案及评分标准高一数学(答)2选择题:ADACACAABDBC填空题:13.1200,500,300(错一空不给分)14.1815.(2,5)16.-1,-78,-7解答题17.解:(1)A=x|3 x 7,B=x|1 x 6.2分 A B
5、=x|1 x 7.4分(2)A B=B A B.5分当 A=时,即 a a2-2 时,符合题意,此时-1 a 2.6分当 A 时,a a2-2a 1a2-2 6.8分解得2 a 2 2.9分综上,a 的范围为a-1,2 2.10分18.解:(1)f(x)=0.5x ,0 x 26400.55x-132 ,2640 3720.6分(2)1518元;.9分(3)3755度.12分19.解:(1)当 k=1时,原不等式可化为-x-2 0,解得 x(-,-2).2分(2)当 k 1时,原不等式可化为(k-1)x-k(x+2)0.4分若 k 23 时,x(-2 ,kk-1 ).6分若 k=23 时,x
6、.8分若 23 k 1时,x(-,-2)(kk-1,+).12分综上所述,当 k=1时,原不等式的解集为x|x -2当 k 23 时,原不等式的解集为x|-2 x kk-1当 k=23 时,原不等式的解集为 当 23 k 1时,原不等式的解集为x|kk-1 x 1时,原不等式的解集为x|x kk-1 20.解:解方程组得x=2y=1z=3.3分 2a+b+3c=1 12a+4b+3c=(2a+b+3c)(12a+4b+3c).6分=14+(b2a+8ab)+(3c2a+6ac)+(12cb+3bc)14+4+6+12=36 12a+4b+3c 36当且仅当 a=112 ,b=13 ,c=16
7、时,等号成立.12分21.解:(1)定义域:(-,0)(0,+).2分(2)因为 f(-x)=1(-x)2+(-x)216=1x2+x216=f(x),所以 f(x)偶函数.4分(3)利用定义证明:只需证明 x1,x2(0,+)时的情况即可,设 x1,x2(0,+)且 x1 x2yx=1x22+x2216-1x12-x1216x2-x1=(x1+x2)(116-1(x1x2)2)(x1+x2)(x1x2)2-1616(x1x2)2当 x1,x2(0,2)时,yx 0所以,f(x)在(-,-2)和(0,2)上单调递减;在(-2,0)和(2,+)上单调递增.8分值域为:12,+).10分.12分(
8、装订线内不要答题)装订线不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
9、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
10、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
11、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
12、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
13、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
14、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
15、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
16、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
17、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
18、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
19、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
20、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
21、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
22、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
23、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
24、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
25、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
26、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
27、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
28、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
29、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
30、不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不22.解:(1)f(x)=(x-1)2-8(x-1)+4x-1=(x-1)+4x-1-8.2分设 t=x-1,x 2,4 t 1,3由y=t+4t-8 ,t 1,3可得当1 t 2 时,即 2 x 3 时,f(x)单调递减函数 f(x)的单调递减区间为 2,3).4分当 2 t 3 时,即 3 x 4 时,f(x)单调递增函数 f(x)的单调递增区间为 3,4.6分由 f(2)=-3 ,f(3)=-4 ,f(4)=-113,得 f(x)的值域为-4,-3.8分(2)g(x)=-x-a 为减函数故当 x 0,1 时,g(x)-1-a,-a由题知 f(x)的值域是 g(x)的值域的子集,.10分-1-a -4-a -3,解得a=3.12分高一数学(答)3