收藏 分享(赏)

2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc

上传人:高**** 文档编号:743955 上传时间:2024-05-30 格式:DOC 页数:11 大小:413KB
下载 相关 举报
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第1页
第1页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第2页
第2页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第3页
第3页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第4页
第4页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第5页
第5页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第6页
第6页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第7页
第7页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第8页
第8页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第9页
第9页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第10页
第10页 / 共11页
2017-2018学年高中数学(苏教版 选修2-3)文档:第2章 章末分层突破 WORD版含答案.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、章末分层突破自我校对pi0,i1,2,ni1两点分布超几何分布P(B|A)0P(B|A)1P(BC)|A)P(B|A)P(C|A)(B,C互斥)P(AB)P(A)P(B)A与B相互独立,则与B,A与,与相互独立P(Xk)Cpk(1p)nk(k0,1,2,n)E(aXb)aE(X)bE(X)pE(X)npV(X)p(1p)V(X)np(1p)V(aXb)a2V(X)条件概率条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率求条件概率的主要方法有:利用条件概率公式P(B|A)计算在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(

2、1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率【精彩点拨】本题是条件概率问题,根据条件概率公式求解即可【规范解答】设“第1次抽到理科题”为事件A,“第2题抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n()A20.根据分步计数原理,n(A)AA12.于是P(A).(2)因为n(AB)A6,所以P(AB).(3)由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率P(B|A).再练一题1掷两颗均匀的骰子,已知第一颗骰子掷出6点,问“掷

3、出点数之和大于或等于10”的概率【解】设“掷出的点数之和大于或等于10”为事件A,“第一颗骰子掷出6点”为事件B.P(A|B).相互独立事件的概率求相互独立事件一般与互斥事件、对立事件结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解特别注意以下两公式的使用前提:(1)若A,B互斥,则P(AB)P(A)P(B),反之不成立(2)若A,B相互独立,则P(AB)P(A)P(B),反之成立设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立(1)求同一工作日

4、至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求P(X1)【精彩点拨】解决本题的关键是将复杂事件拆分成若干个彼此互斥事件的和或几个彼此相互独立事件的积事件,再利用相应公式求解【规范解答】记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备(1)DA1BCA2BA2C,P(B)0.6,P(C)0.4,P(Ai)C0.52,i0,1,2,所以P(D)P(A1BCA2BA2C)P(A1BC)P(A2B)P(A2C)P(A1)P(B)P(C)P(A2)P(B)P(A2)P()

5、P(C)0.31.(2)X1表示在同一工作日有一人需使用设备P(X1)P(BA0A0CA1)P(B)P(A0)P()P()P(A0)P(C)P()P(A1)P()0.60.52(10.4)(10.6)0.520.4(10.6)20.52(10.4)0.25.再练一题2某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6.且各题答对与否相互之间没有影响(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率【解】记“这名同学答对第i个问题”为事件

6、Ai(i1,2,3),则P(A1)0.8,P(A2)0.7,P(A3)0.6.(1)这名同学得300分的概率为:P1P(A12A3)P(1A2A3)P(A1)P(2)P(A3)P(1)P(A2)P(A3)0.80.30.60.20.70.60.228.(2)这名同学至少得300分的概率为:P2P1P(A1A2A3)P1P(A1)P(A2)P(A3)0.2280.80.70.60.564.离散型随机变量的分布列、均值和方差1.含义:均值和方差分别反映了随机变量取值的平均水平及其稳定性2应用范围:均值和方差在实际优化问题中应用非常广泛,如同等资本下比较收益的高低、相同条件下比较质量的优劣、性能的好

7、坏等3求解思路:应用时,先要将实际问题数学化,然后求出随机变量的概率分布列对于一般类型的随机变量,应先求其分布列,再代入公式计算,此时解题的关键是概率的计算计算概率时要结合事件的特点,灵活地结合排列组合、古典概型、独立重复试验概率、互斥事件和相互独立事件的概率等知识求解若离散型随机变量服从特殊分布(如两点分布、二项分布等),则可直接代入公式计算其数学期望与方差甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为.(1)求甲队分别胜乙队和丙队的概率P1,P2;(2)设在该

8、次比赛中,甲队得分为,求的分布列及数学期望、方差【精彩点拨】(1)通过列方程组求P1和P2;(2)由题意求出甲队得分的可能取值,然后再求出的分布列,最后再求出数学期望和方差【规范解答】(1)设“甲队胜乙队”的概率为P1,“甲队胜丙队”的概率为P2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P1P2.乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获得第一名的概率为(1P1).解,得P1,代入,得P2,所以甲队胜乙队的概率为,甲队胜丙队的概率为.(2)的可能取值为0,3,6.当0时,甲队两场比赛皆输,其概率为P(0);当3时,甲队两场只胜一场,其概率为P(3

9、);当6时,甲队两场皆胜,其概率为P(6).所以的分布列为036P所以E()036.V()222.再练一题3为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名从这8名运动员中随机选择4人参加比赛(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望【解】(1)由已知,有P(A).所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(Xk)(k1,2,3,4)所

10、以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)1234.正态分布的实际应用对于正态分布问题,课标要求不是很高,只要求了解正态分布中最基础的知识,主要是:(1)掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率正态分布的概率通常有以下两种方法:(1)注意“3原则”的应用记住正态总体在三个区间内取值的概率(2)注意数形结合由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题某学校高三2 500名学生第二次模拟考试总成绩服从正态分布N

11、(500,502),请您判断考生成绩X在550600分的人数【精彩点拨】根据正态分布的性质求出P(550x600),即可解决在550600分的人数【规范解答】考生成绩XN(500,502),500,50,P(550X600)P(500250X500250)P(50050X50050)(0.954 40.682 6)0.135 9,考生成绩在550600分的人数为2 5000.135 9340(人)再练一题4为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(,22),且正态分布密度曲线如图2

12、1所示若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是_图21【解析】由题意,可知60.5,2,故P(58.5X62.5)P(X)0.682 6,从而属于正常情况的人数是1 0000.682 6683. 【答案】6831将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_【解析】将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(6,6),共36种情况设事件A“出

13、现向上的点数之和小于10”,其对立事件“出现向上的点数之和大于或等于10”,包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况所以由古典概型的概率公式,得P(),所以P(A)1.【答案】2已知随机变量X服从二项分布B(n,p)若E(X)30,D(X)20,则p_.【解析】由E(X)30,D(X)20,可得解得p.【答案】3A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A班66.577.58B班6789101112C班34.567.5910.51213.5(1)试估计

14、C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时)这3个新数据与表格中的数据构成的新样本的平均数记为1,表格中数据的平均数记为0,试判断0和1的大小(结论不要求证明) 【解】(1)由题意知,抽出的20名学生中,来自C班的学生有8名根据分层抽样的方法,估计C班的学生人数为10040.(2)设事件Ai为“甲是现有样本中A班的第i个人”,i1,2,5,事件Cj为“乙是现有样

15、本中C班的第j个人”,j1,2,8.由题意可知,P(Ai),i1,2,5;P(Cj),j1,2,8.P(AiCj)P(Ai)P(Cj),i1,2,5,j1,2,8.设事件E为“该周甲的锻炼时间比乙的锻炼时间长”由题意知,EA1C1A1C2A2C1A2C2A2C3A3C1A3C2A3C3A4C1A4C2A4C3A5C1A5C2A5C3A5C4.因此P(E)P(A1C1)P(A1C2)P(A2C1)P(A2C2)P(A2C3)P(A3C1)P(A3C2)P(A3C3)P(A4C1)P(A4C2)P(A4C3)P(A5C1)P(A5C2)P(A5C3)P(A5C4)15.(3)10.4某市A,B两所

16、中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望【解】(1)由题意,参加集训的男、女生各有6名参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为.因此,A中学至少有1名学生入选代表队的概率为1.(2)根据题意,X的可能取值为1,2,3.P(X1),P(X2),P(X3),所以X的分布列为X123P因此,X的数学期望为E(X)1P(X1)2P(X2)3P(X3)1232.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3