1、学业分层测评(十六)函数的和、差、积、商的导数(建议用时:45分钟)学业达标一、填空题1.设f(x)ln a2x(a0且a1),则f(1)_.【解析】f(x)ln a2x2xln a,f(x)(2xln a)(2x)ln a2x(ln a)2ln a,故f(1)2ln a.【答案】2ln a2.函数y(2x3)2的导数为_.【导学号:24830077】【解析】y(2x3)244x3x6,y6x512x2.【答案】6x512x2 3.函数y的导数是_.【解析】y.【答案】4.设f(x)xln x,若f(x0)2,则x0的值为_.【解析】f(x)ln xxln x1,因为f(x0)2,所以ln x
2、012,ln x01,x0e.【答案】e5.函数f(x)(x1)2(x1)在x1处的导数等于_.【解析】f(x)(x1)2(x1)x3x2x1,f(x)3x22x1,f(1)3214.【答案】46.已知f(x)x22xf(1),则f(0)的值为_.【解析】f(x)2x2f(1),f(1)22f(1),即f(1)2,f(0)2f(1)4.【答案】47.若曲线yex上点P处的切线平行于直线2xy10,则点P的坐标是_.【解析】设点P的坐标为(x0,y0),yex.又切线平行于直线2xy10,所以ex02,可得x0ln 2,此时y02,所以点P的坐标为(ln 2,2).【答案】(ln 2,2)8.设
3、f(x)ax2bsin x,且f(0)1,f,则a_,b_.【解析】f(x)2axbcos x,f(0)b1得b1,fa,得a0.【答案】01二、解答题9.求下列函数的导数:(1)yexln x; (2)yx. (3)f(x).【解】(1)y(exln x)exln xexex.(2)yx31,y3x2.(3)f(x)ex10.已知函数f(x)x34x25x4.(1)求曲线f(x)在点(2,f(2)处的切线方程;(2)求经过点A(2,2)的曲线f(x)的切线方程.【解】(1)f(x)3x28x5,f(2)1,又f(2)2,曲线在点(2,f(2)处的切线方程为y2x2,即xy40.(2)设曲线与
4、经过点A(2,2)的切线相切于点P(x0,x4x5x04),f(x0)3x8x05,切线方程为y(2)(3x8x05)(x2),又切线过点P(x0,x4x5x04),x4x5x02(3x8x05)(x02),整理得(x02)2(x02)0,解得x02或1,经过A(2,2)的曲线f(x)的切线方程为xy40,或y20.能力提升1.一质点做直线运动,由始点起经过t s后的距离为st44t316t2,则速度为零的时刻是_. 【导学号:24830078】【解析】vst312t232t.令v0,则t0,4,8.【答案】0 s,4 s,8 s2.已知点P在曲线y上,为曲线在点P处的切线的倾斜角,则的取值范
5、围是_.【解析】y,10,即1tan 0,由正切函数图象得.【答案】3.设f(x)(axb)sin x(cxd)cos x,若已知f(x)xcos x,则f(x)_.【解析】f(x)(axb)sin x(cxd)cos x(axb)sin x(axb)(sin x)(cxd)cos x(cxd)(cos x)asin x(axb)cos xccos x(cxd)sin x(adcx)sin x(axbc)cos x.为使f(x)xcos x,应满足解方程组,得从而可知,f(x)xsin xcos x.【答案】xsin xcos x4.已知函数f(x)x32x23x(xR)的图象为曲线C.(1)求过曲线C上任意一点切线斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围.【解】 (1)由题意得f(x)x24x3,则f(x)(x2)211,即过曲线C上任意一点切线斜率的取值范围是1,).(2)设曲线C的其中一条切线的斜率为k,则由(2)中条件并结合(1)中结论可知,解得1k0或k1,故由1x24x30或x24x31,得x(,2(1,3)2,).