1、高考资源网() 您身边的高考专家学生用书P109(单独成册)A基础达标1如果a3N(a0,a1),则有()Alog3NaBlog3aNClogaN3 Dloga3N答案:C2logab1成立的条件是()Aab Bab且b0Ca0,a1 Da0,ab1答案:D3已知log2x3,则x等于()A. BC. D解析:选D.因为log2x3,所以x238.所以x8.故选D.4已知logx162,则x等于()A4 B4C256 D2解析:选B.因为logx162,所以x216,即x4,又因为x0且x1,所以x4.5已知logam,loga3n,则am2n等于()A3 BC9 D解析:选D.由已知得am,
2、an3.所以am2nama2nam(an)232.故选D.已知x2y24x2y50,则logx(yx)的值是_解析:因为x2y24x2y50,所以(x2)2(y1)20, 即x2且y1,故logx(yx)log210.答案:07若a0,a2,则loga_解析:由a0,a2,可知a,所以logalog1.答案:18已知f(x)则满足f(x)的x的值为_解析:由题意得或解得x2,与x1矛盾,故舍去,解得x3,符合x1.所以x3.答案:39若logxm,logym2,求的值解:因为logxm,所以x,x2.因为logym2,所以y,y.所以16.10.求下列各式的值(1)log93;(2)log20
3、.25;(3)log9;(4)log0.5.解:(1)令log93x,则9x3,即32x3,所以2x1,所以x,即log93.(2)令log20.25x,则2x0.25,即2x22,所以x2,即log20.252.(3)令log9x,则9x,即32x3.所以2x,所以x,即log9.(4)令log0.5x,则0.5x,即2,所以2x2,所以x,即log0.5.B能力提升1若log2log(log2x)log3log(log3y)log5log(log5z)0,则x,y,z的大小关系是_解析:由log5log(log5z)0,得log(log5z)1,log5z,z5(56),由log3log(
4、log3y)0,得log(log3y)1,log3y,y3(310).又由log2log(log2x)0,得log(log2x)1,log2x,x2(215).因为31021556,所以yxz.答案: zxy2若log42log21log2(1log2x),则x_.解析:由原等式,得2log21log2(1log2x)42,所以log21log2(1log2x)1.所以1log2(1log2x)2.故log2(1log2x)1,所以1log2x2.所以log2x1,所以x2.答案:23已知a0且a1,loga2m,loga3n.求a2mn的值解:由所以a2mn(am)2an4312.4(选做题)设M0,1,Nlg a,2a,a,11a,是否存在实数a,使MN1?解:不存在实数a,使MN1若lg a1,则a10,此时11a1,从而11alg a1,与集合元素的互异性矛盾;若2a1,则a0,此时lg a无意义;若a1,此时lg a0,从而MN0,1,与条件不符;若11a1,则a10,从而lg a1,与集合元素的互异性矛盾综上,不存在实数a,使MN1高考资源网版权所有,侵权必究!