1、第2节单_摆1.单摆的回复力是摆球所受重力沿圆弧切线方向的分力,只有在摆角较小时,才满足Fkx,才可看做简谐运动。2单摆在平衡位置时速度最大,回复力为零,但摆球所受合外力不为零。3单摆的周期公式T2 ,其大小与摆球质量及振幅无关。单摆的简谐运动自读教材抓基础1单摆2单摆的回复力(1)回复力的来源:摆球所受重力沿圆弧切线方向的分力。(2)回复力的特点:在偏角很小时,单摆摆球所受的回复力与偏离平衡位置的位移成正比,方向总指向平衡位置,即Fx或Fkx。3单摆做简谐运动的条件在偏角较小的情况下,单摆做简谐运动。跟随名师解疑难1单摆的运动特点(1)摆线以悬点为圆心做变速圆周运动,因此在运动过程中只要速度
2、v0,沿半径方向都受向心力。(2)摆线同时以平衡位置为中心做往复运动,因此在运动过程中只要不在平衡位置,沿轨迹的切线方向都受回复力。2单摆的动力学特征(1)任意位置:图121如图121所示,G2Gcos ,FG2的作用就是提供摆球绕O做变速圆周运动的向心力;G1Gsin 的作用是提供摆球以O为中心做往复运动的回复力。(2)平衡位置:摆球经过平衡位置时,G2G,G10,此时F应大于G,FG的作用是提供向心力;因在平衡位置,回复力F回0,与G10相符。(3)单摆做简谐运动的推证:在很小时,sin tan ,G1Gsin x,G1的方向与摆球位移方向相反,所以有回复力F回G1xkx。因此,在摆角很小
3、时,单摆做简谐运动。(摆角一般不超过5)学后自检(小试身手)关于单摆摆球在运动过程中的受力,下列结论正确的是()A摆球受重力、摆线的张力、回复力、向心力作用B摆球受的回复力最大时,向心力为零;回复力为零时,向心力最大C摆球受的回复力最大时,摆线中的张力大小比摆球的重力大D摆球受的向心力最大时,摆球的加速度方向沿摆球的运动方向解析:选B单摆在运动过程中,摆球受重力和摆线的拉力作用,故A错。重力垂直于摆线的分力提供回复力。当回复力最大时,摆球在最大位移处,速度为零,向心力为零,拉力等于重力沿摆线的分力大小,则拉力小于重力;在平衡位置处,回复力为零,速度最大,向心力最大,摆球的加速度方向沿摆线指向悬
4、点,故C、D错,B对。单摆做简谐运动的周期自读教材抓基础1影响单摆周期的因素实验表明,单摆振动的周期与摆球质量无关,在振幅较小时与振幅无关,但与摆长有关,摆长越长,周期越长。2单摆的周期公式(1)探究单摆周期与摆长的关系:制作单摆:测量:用停表测出单摆做3050次全振动的时间,计算周期T;用游标卡尺测量摆球直径,用米尺测出摆线长度,求出单摆摆长l;改变摆长,得到多组数据。数据处理:猜测T与l的关系可能,作出T2l图像,确定关系。(2)周期公式:荷兰物理学家惠更斯发现单摆的周期T与摆长l的二次方根成正比,与重力加速度g的二次方根成反比,他确定为:T2。(3)影响单摆周期的相关因素:由单摆的周期公
5、式可知,单摆做简谐运动(摆角小于5)的周期只与摆长l和当地的重力加速度g有关,而与振幅和摆球的质量无关,故又叫做单摆的固有周期。跟随名师解疑难1摆长l(1)实际的单摆摆球不可能是质点,所以摆长应是从悬点到摆球球心的长度:即ll,l为摆线长,d为摆球直径。(2)等效摆长:图122(a)中甲、乙在垂直纸面方向摆起来效果是相同的,所以甲摆的摆长为lsin ,这就是等效摆长。其周期T2 ,图(b)中,乙在垂直纸面方向摆动时,与甲摆等效;乙在纸面内小角度摆动时,与丙等效。图1222重力加速度g(1)若单摆系统只处在重力场中且处于静止状态,g由单摆所处的空间位置决定,即g,式中R为物体到地心的距离,M为地
6、球的质量,g随所在位置的高度的变化而变化。另外,在不同星球上M和R也是变化的,所以g也不同,g9.8 m/s2只是在地球表面附近时的取值。(2)等效重力加速度:若单摆系统处在非平衡状态(如加速、减速、完全失重状态),则一般情况下,g值等于摆球相对静止在自己的平衡位置时,摆线所受的张力与摆球质量的比值。如图123所示,此场景中的等效重力加速度ggsin 。图123球静止在O时,FTmgsin ,等效加速度ggsin 。学后自检(小试身手)两个相同的单摆静止于平衡位置,使摆球分别以水平初速v1、v2(v1v2)在竖直平面内做小角度摆动,它们的频率与振幅分别为f1、f2和A1、A2,则()Af1f2
7、,A1A2Bf1A2 Df1f2,A1A2解析:选C单摆的频率由摆长决定,摆长相等,频率相等,所以A、B错误;由机械能守恒,小球在平衡位置的速度越大,其振幅越大,所以C正确,D错误。单摆的受力特点分析典题例析1下列有关单摆运动过程中的受力说法,正确的是()A单摆运动的回复力是重力和摆线拉力的合力B单摆运动的回复力是重力沿圆弧切线方向的一个分力C单摆经过平衡位置时合力为零D单摆运动的回复力是摆线拉力的一个分力思路点拨单摆的回复力由摆球重力沿圆弧切线方向的分力提供,在平衡位置处,摆球位移为零,水平加速度为零。解析:单摆是在一段圆弧上运动,因此单摆运动过程中不仅有回复力,而且有向心力,即单摆运动的合
8、外力不仅要提供回复力,还要提供向心力,单摆的回复力是重力沿圆弧切线方向的一个分力,而不是摆线拉力的分力,故选项B正确,A、D错误;单摆经过平衡位置时,回复力为零,向心力最大,故其合外力不为零,所以选项C错误。答案:B探规寻律(1)单摆振动中的回复力不是它受到的合外力,而是重力沿圆弧切线方向的一个分力。单摆振动过程中,有向心力,这是与弹簧振子不同之处。(2)在最大位移处时,因速度为零,所以向心力为零,故此时合外力也就是回复力。(3)在平衡位置处时,由于速度不为零,故向心力也不为零,即此时回复力为零,但合外力不为零。跟踪演练对于单摆的运动,以下说法中正确的是()A单摆运动时,摆球受到的向心力大小处
9、处相等B单摆运动的回复力就是摆球受到的合力C摆球经过平衡位置时所受回复力为零D摆球经过平衡位置时所受加速度为零解析:选C单摆振动过程中受到重力和绳子拉力的作用,把重力沿切向和径向分解,其切向分力提供回复力,绳子拉力与重力的径向分力的合力提供向心力,向心力大小为m,可见最大偏角处向心力为零,平衡位置处向心力最大有向心加速度,而回复力在最大偏角处最大,平衡位置处为零,故只有C项正确。对单摆周期公式的理解典题例析2有一单摆,其摆长l1.02 m,已知单摆做简谐运动,单摆振动30 次用的时间t60.8 s,试求:(1)当地的重力加速度是多大?(2)如果将这个单摆改为秒摆,摆长应怎样改变?改变多少?思路
10、点拨(1)如何由周期公式求重力加速度。提示:由T2可得g(2)秒摆的周期为多少?要改变单摆的周期,可以采取什么措施?提示:秒摆的周期为2 s,由于同一地点的重力加速度不变,要改变单摆的周期可以改变单摆的摆长。解析:(1)当单摆做简谐运动时,其周期公式T2,由此可知g,只要求出T值代入即可。因为T s2.027 s所以g m/s29.79 m/s2。(2)秒摆的周期是2 s,设其摆长为l0,由于在同一地点重力加速度是不变的,根据单摆的振动规律有:,故有:l0 m0.993 m。所以其摆长要缩短lll01.02 m0.993 m0.027 m。答案:(1)9.79 m/s2(2)缩短0.027 m
11、探规寻律有关单摆周期问题的处理方法:(1)明确单摆的运动过程,看是否符合简谐运动的条件。(2)在运用T2时,要注意l和g是否发生变化,如果发生变化,则分别求出不同l和g时的运动时间。(3)改变单摆振动周期的途径是:改变单摆的摆长;改变单摆的重力加速度(如改变单摆的位置或让单摆失重或超重)。跟踪演练已知单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m,则两摆长la与lb分别为()Ala2.5 m,lb0.9 mBla0.9 m,lb2.5 mCla2.4 m,lb4.0 m Dla4.0 m,lb2.4 m解析:选B设两个单摆的周期分别为Ta和Tb,由题意知10Ta6
12、Tb,即TaTb35。根据单摆周期公式T2,得lT2,由此可得lalbTa2Tb2925,且lbla1.6 m,解得la0.9 m,lb2.5 m。课堂双基落实1单摆是为研究振动而抽象出的理想化模型,其理想化条件是()A摆线质量不计B摆线长度不伸缩C摆球的直径比摆线长度短得多D只要是单摆的运动就是一种简谐运动解析:选ABC单摆的理想化条件是摆线质量很小,伸缩性很小,摆球密度较大,直径比摆线短得多,摆动时摆角较小,故A、B、C正确,D错误。2关于单摆,下列说法中正确的是()A摆球受到的回复力方向总是指向平衡位置B摆球受到的回复力是它的合力C摆球经过平衡位置时,所受的合力为零D摆角很小时,摆球受到
13、的合力的大小跟摆球对平衡位置的位移大小成正比解析:选A单摆的回复力不是它的合力,而是重力沿圆弧切线方向的分力,A对,B错;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心),C错;另外摆球所受的合力不是回复力,所以与位移大小不成正比,D错。3.如图124所示,曲面AO是一段半径为2 m的光滑圆弧面,圆弧与水平面相切于O点,AO弧长为10 cm,现将一小球先后从曲面的顶端A和AO弧的中点B由静止释放,到达底端的速度分别为v1和v2,经历的时间分别为t1和t2,那么() 图124Av1v2,t1t2Bv1v2,t1t2Cv1v2,t1t2 D以上三种情
14、况都有可能解析:选B因为AO弧长远小于半径,所以小球从A、B处沿圆弧滑下可等效成小角度单摆的摆动,即做简谐运动,等效摆长为2 m,单摆的周期与振幅无关,故t1t2,因mghmv2,所以v,故v1v2。4有一摆长为L的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程的闪光照片如图125所示(悬点和小钉未被摄入),P为摆动中的最低点。已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为()图125A. B.C. D无法确定解析:选C每相邻两次闪光的时间间隔相等,从MP有4个频
15、闪时间间隔,从PN有2个频闪时间间隔,它们都是四分之一周期,因此,右侧摆动的周期是左侧摆动的周期的2倍,所以前、后摆长之比为41,故钉子距悬点的距离为L,C正确。课下综合检测1要增加单摆在单位时间内的摆动次数,可采取的方法是()A增大摆球的质量 B缩短摆长C减小摆动的角度 D升高气温解析:选B由单摆的周期公式T2,可知周期只与l、g有关,而与质量、摆动的幅度无关。当l增大时,周期增大,频率减小;g增大时,周期减小,频率增大,B正确。2如图1所示是一个单摆(T0D小球所受重力和绳的拉力的合力提供单摆做简谐运动的回复力解析:选C摆球在最高点,绳子拉力小于摆球重力,在最低点,绳子拉力大于摆球的重力,
16、A、B错;高空中的重力加速度g变小,由T2知,TT0,C对;单摆的回复力由摆球重力沿圆弧切线方向的分力提供,D错。4一物体在某行星表面受到的万有引力是它在地球表面受到的万有引力的。在地球上走得很准的摆钟搬到此行星上后,此摆钟分针转动一整圈所经历的时间实际上是()A. h B. hC2 h D4 h解析:选C万有引力是地球表面的,则该星球表面的重力加速度为地球表面重力加速度的,由T2 可知, 2,即t02t,故分针转一圈所经历的时间实际为2小时。5.如图3所示,三根细线于O点处打结,A、B端固定在同一水平面上相距为L的两点上,使AOB成直角三角形,BAO30,已知OC线长是L,下端C点系着一个小
17、球。小球半径忽略不计,下面说法中正确的是() 图3A让小球在纸面内小角度摆动,周期T2 B让小球在垂直纸面方向小角度摆动,其周期T2 C让小球在纸面内小角度摆动,周期T2 D让小球在垂直纸面内小角度摆动,周期为T2 解析:选A让小球在纸面内小角度摆动,单摆以O点为悬点,摆长为L,周期为T2 ,让小球在垂直纸面内小角度摆动,摆球以OC的延长线与AB交点为悬点,摆长为L cos 30LL,周期为T2 ,选项A正确。6.如图4所示,MN为半径较大的光滑圆弧轨道的一部分,把小球A放在MN的圆心处,再把另一小球B放在MN上离最低点C很近的M处,今使两球同时自由释放,则在不计空气阻力时有() 图4AA球先
18、到达C点BB球先到达C点C两球同时到达C点D无法确定哪一个球先到达C点解析:选AA做自由落体运动,到C点所需时间tA ,R为圆弧轨道的半径。因为圆弧轨道的半径R很大,B球离最低点C又很近,所以B球在轨道给它的支持力和重力的作用下沿圆弧做简谐运动(等同于摆长为R的单摆),则运动到最低点C所用的时间是单摆振动周期的,即tBtA,所以A球先到达C点。7.一块涂有炭黑的玻璃板,质量为2 kg,在拉力F作用下,由静止开始沿竖直方向向上运动。一个装有水平指针的振动频率为5 Hz的固定电动音叉在玻璃板上画出了如图5所示的曲线,图中OA1 cm,OB4 cm,OC9 cm,求外力F的大小。(g取10 m/s2
19、) 图5解析:由题可知,f5 Hz,T0.2 s,而tOAtABtBCT/2。又因为xBAxAOxCBxBA恒量x,竖直方向为匀加速直线运动。根据xat2,所以ax/t22 m/s2由牛顿第二定律得Fmamg24 N。答案:24 N8若在某山峰峰顶利用单摆来确定山峰的高度,已知该单摆在海平面处的周期是T0。在峰顶时,测得该单摆周期为T。试求山峰峰顶离海平面的高度h。(地球可看做质量均匀分布的半径为R的球体;结果用T、T0、R表示)解析:设单摆的摆长为l,地球的质量为M,则由万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:gG,ghG由单摆的周期公式可知T02,T2由以上各式可求得h(1)R。答案:(1)R