ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:548KB ,
资源ID:736318      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-736318-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届高三寒假数学二轮微专题45讲 04 三角函数图象与性质.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2023届高三寒假数学二轮微专题45讲 04 三角函数图象与性质.doc

1、三角函数图象与性质在三角函数图象与性质中,对整个图象的性质影响是最大的!毕竟,可以改变函数的单调区间,极值个数,零点个数等,而只能管到图象左右平移,没有那么多丰富的变式. 因此,对的取值范围的考察就是高考的热门考点之一,这部分考题呈现出综合性较强,对学生的逻辑推理,直观想象素养要求较高,比如2016年一卷12题,2019年一卷11题,三卷12题等,所以,对的取值范围的系统研究有助于学生进一步突破三角压轴!一知求知求的问题中,我认为最好的处理方法就是换元,通过换元将对图象的影响转化为对的某个动区间的影响,这样做的好处就是图象定下来了,是我们最熟悉的正弦函数,处理起来更加直观.下面我们来看一些例子

2、.1.已知单调性求.例1. 已知,函数在上单调递减,求的取值范围.分析:(1)最大的增,减区间占半周期可求的范围;(2)是最大减区间的子区间.解析:,由于,故欲使得在区间递减,只需使得在递减,即可解得.2.已知最值求.例2函数,当上恰好取得5个最大值,则实数的取值范围为( )ABCD【答案】C3.已知对称轴求.例3. 已知函数的图象在上有且仅有两条对称轴,求的取值范围.变式:图象在上有且仅有两条对称轴,求的取值范围.4.已知零点求.例4已知其中,若函数在区间内没有零点,则的取值范围是( )AB CD【答案】D5.求综合问题例5(2019全国3卷)设函数=sin()(0),已知在有且仅有5个零点

3、,下述四个结论:在()有且仅有3个极大值点 在()有且仅有2个极小值点在()单调递增 的取值范围是)其中所有正确结论的编号是ABCD【答案】D解析:当时,在有且仅有5个零点,故正确,由,知时,令时取得极大值,正确;极小值点不确定,可能是2个也可能是3个,不正确;因此由选项可知只需判断是否正确即可得到答案,当时,若在单调递增,则 ,即 ,故正确故选D二 与皆不知.例6.(2022武汉二调)已知函数,且在内恰有2个极值点,且,求的取值集合_.解析:依题,欲使得在内恰有2个极值点,则需满足:,故.例7已知函数在区间上单调,且,则的最大值为A7B9C11D13解析:由题意,函数在区间上单调,则,解得,

4、所,即,又由,则,即,解得.当时,此时,则,又由,即,解得,即,此时函数在区间上不单调,不满足题意.当时,此时,则,又由,即,解得,即,此时函数在区间上是单调函数,满足题意,所以的最大值为,故选B.练习题1函数的图象在上恰有两个最大值点,则的取值范围为( )ABCD【答案】C2若函数在上的值域为,则的最小值为( )ABCD【答案】A3已知函数,若函数在区间上为单调递减函数,则实数的取值范围是( )ABCD【答案】B4设函数在上单调递减,则下述三个结论:在上的最大值为,最小值为;在上有且仅有4个零点;关于轴对称;其中所有正确结论的编号是( )ABCD【答案】A5函数(,),已知,且对于任意的都有,若在上单调,则的最大值为( )ABCD【答案】D6已知函数,且在区间上的最大值为.若对任意的,都有成立,则实数的最大值是( )ABCD解析:,所以周期,因为,且在区间上的最大值为,所以是函数图象的一条对称轴,且,即有,. 而,解得. 故. 因为任意的,都有成立,所以在上,. 令,若,即,则,成立;若,即,此时,所以,而,即,解得. 即.故满足题意的实数的范围为,即实数的最大值是.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3