1、常考问题4导数的简单应用(建议用时:50分钟)1函数f(x)x2ln x的单调递减区间为_解析由题意知,函数的定义域为(0,),又由f(x)x0,解得0x1,所以函数的单调递减区间为(0,1答案(0,12(2013扬州质量检测)已知函数f(x)的导函数f(x)a(x1)(xa),若f(x)在xa处取到极大值,则a的取值范围是_解析根据函数极大值与导函数的关系,借助二次函数图象求解因为f(x)在xa处取到极大值,所以xa为f(x)的一个零点,且在xa的左边f(x)0,右边f(x)0,所以导函数f(x)的开口向下,且a1,即a的取值范围是(1,0)答案(1,0)3已知函数yf(x)(xR)的图象如
2、图所示,则不等式xf(x)0的解集为_解析xf(x)0或当x时,f(x)单调递减,此时f(x)0.答案4已知函数f(x)x3ax2x2(a0)的极大值点和极小值点都在区间(1,1)内,则实数a的取值范围是_解析由题意可知f(x)0的两个不同解都在区间(1,1)内因为f(x)3x22ax1,所以根据导函数图象可得 又a0,解得a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大值为_解析依题意知f(x)12x22ax2b,f(1)0,即122a2b0,ab6.又a0,b0,ab29,当且仅当ab3时取等号,ab的最大值为9.答案99已知f(x)exax1.(1)求f(x)的
3、单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围解(1)f(x)exax1(xR),f(x)exa.令f(x)0,得exa.当a0时,f(x)0在R上恒成立;当a0时,有xln a综上,当a0时,f(x)的单调增区间为(,);当a0时,f(x)的单调增区间为(ln a,)(2)由(1)知f(x)exa.f(x)在R上单调递增,f(x)exa0恒成立,即aex在R上恒成立xR时,ex0,a0,即a的取值范围是(,010(2013西安五校二次联考)已知函数f(x)ax2(2a1)x2ln x,aR.(1)若曲线yf(x)在x1和x3处的切线互相平行,求a的值;(2)求f(x)的单调区间解f(x)ax(2a1)(x0)(1)由题意得f(1)f(3),解得a.(2)f(x)(x0)当a0时,x0,ax10;在区间(2,)上,f(x)0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,)当0a2.在区间(0,2)和上,f(x)0;在区间上,f(x)时,00;在区间上,f(x)0),f(x)x5.令f(x)0,解得x2或3.当0x3时,f(x)0,故f(x)在(0,2),(3,)上为增函数;当2x3时,f(x)0,故f(x)在(2,3)上为减函数由此可知f(x)在x2处取得极大值f(2)6ln 2,在x3处取得极小值f(3)26ln 3.备课札记: