1、课时达标训练(十五)对数的概念一、填空题1若对数式log(x1)(x3)有意义,则x的取值范围为_2已知log7log3(log2x)0,那么x等于_3若loga2m,loga3n,则a2mn_.4若f(10x)x,则f(1 000)的值为_5若102,lg 3,则100_.6若log3(a1)1,则loga2log2(a1)的值为_二、解答题7(1)将对数式log92,化为指数式;(2)将指数式1030.001,化为对数式;(3)已知log2(log5x)1,求x的值8求下列各式中x的值:(1)log8x;(2)logx27;(3)log2(log5x)0;(4)log3(lg x)1.9已
2、知log2x3,log2y5,求log2的值答 案1解析:若log(x1)(x3)有意义,则解得x1且x2.答案:(1,2)(2,)2解析:由log7log3(log2x)0,得log3(log2x)1,即log2x3,解得x8,所以x8.答案:3解析:由loga2m得am2,由loga3n得an3.a2mna2man(am)2an22312.答案:124解析:令10xt,xlg t.f(t)lg t即f(x)lg x.f(1 000)lg 1 000,1031 000,f(1 000)3.答案:35解析:lg 3,103.100.答案:6解析:log3(a1)1,a131,即a2.loga2log2(a1)log22log2(21)101.答案:17解:(1)log92,()29;(2)1030.001,log100.0013,即lg 0.0013;(3)log2(log5x)1,log5x2,x5225.8解:(1)由log8x,得x8(23)22.(2)由logx27,得x27,x(33)3481.(3)由log2(log5x)0,得log5x1,所以x5.(4)由log3(lg x)1,得lg x3,所以x1031 000.9解:log2x3,log2y5,x23,y25,log2log2log2222.