1、课时达标训练(二十一)空间向量的数量积1已知A(2,5,1),B(2,2,4),C(1,4,1),则向量与的夹角为_2已知|a|2,|b|3,a,b60,则|2a3b|_.3若(4,6,1),(4,3,2),|a|1,且a,a,则a_.4已知a(1,1,0),b(0,1,1),c(1,0,1),pab,qa2bc,则pq_.5如图,120的二面角的棱上有A,B两点,直线AC,BD分别在两个半平面内,且都垂直于AB.若AB4,AC6,BD8,则CD的长为_6已知a(1,5,1),b(2,3,5)(1)若(kab)(a3b),求k的值;(2)若(kab)(a3b),求k的值7已知A(1,1,1),
2、B(2,2,2),C(3,2,4),求ABC的面积8在长方体OABCO1A1B1C1中,|OA|2,|AB|3,|AA1|2,E是BC的中点建立空间直角坐标系,用向量方法解决下列问题(1)求直线AO1与B1E所成的角的余弦值;(2)作O1DAC于D,求点O1到点D的距离答 案1解析:(0,3,3),(1,1,0),cos,60.答案:602解析:ab23cos 603.|2a3b|.答案:3解析:设a(x,y,z),由题意有代入坐标可解得:或答案:或4解析:p(1,1,0)(0,1,1)(1,0,1),q(1,1,0)2(0,1,1)(1,0,1)(0,3,1),pq1003(1)11.答案:
3、15解析:ACAB,BDAB,0,0.又二面角为120,60,2|2()22222()164,|2.答案:26解:kab(k2,5k3,k5),a3b(132,533,135)(7,4,16)(1)(kab)(a3b),解得k.(2)(kab)(a3b),(k2)7(5k3)(4)(k5)(16)0.解得k.7解:(1,1,1),(2,1,3),|,|,6,cosBACcos,sin BAC,SABC|sin BAC.8解:建立如图所示的空间直角坐标系(1)由题意得A(2,0,0),O1(0,0,2),B1(2,3,2),E(1,3,0),(2,0,2),(1,0,2),cos ,.故AO1与B1E所成的角的余弦值为.(2)由题意得,C(0,3,0),设D(x,y,0),(x,y,2),(x2,y,0),(2,3,0),解得D.O1D| .