1、专题三数列真题体验引领卷一、选择题1(2015全国卷)设Sn是等差数列an的前n项和,若a1a3a53,则S5()A5 B7 C9 D112(2014天津高考)设an是首项为a1,公差为1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1()A2 B2C. D3(2015全国卷)已知an是公差为1的等差数列,Sn为an的前n项和若S84S4,则a10()A. B.C10 D124(2015全国卷)已知等比数列an满足a1,a3a54(a41),则a2()A2 B1 C. D.5(2013全国卷)设等差数列an的前n项和为Sn,若Sm12,Sm0,Sm13,则m()A3 B4C5
2、 D66(2015福建高考)若a,b是函数f(x)x2pxq(p0,q0)的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则pq的值等于()A9 B5C4 D2二、填空题7(2015全国卷)在数列an中,a12,an12an,Sn为an的前n项和若Sn126,则n_8(2015安徽高考)已知数列an中,a11,anan1(n2),则数列an的前9项和等于_9(2015广东高考)若三个正数a,b,c成等比数列,其中a52,c52,则b_三、解答题10(2015安徽高考)已知数列an是递增的等比数列,且a1a49,a2a38.(1)求数列an的通项公式;(2
3、)设Sn为数列an的前n项和,bn,求数列bn的前n项和Tn.11(2015福建高考)在等差数列an中,a24,a4a715.(1)求数列an的通项公式;(2)设bn2an2n,求b1b2b3b10的值12(2015山东高考)已知数列an是首项为正数的等差数列,数列的前n项和为.(1)求数列an的通项公式;(2)设bn(an1)2an,求数列bn的前n项和Tn.专题三数列真题体验引领卷1Aan为等差数列,a1a52a3,a1a3a53a33,得a31,S55a35.故选A.2DS1,S2,S4成等比数列,SS1S4,又Sn为公差为1的等差数列的前n项和从而(a1a11)2a1,解得a1.3B由
4、S84S4知,a5a6a7a83(a1a2a3a4),又d1,a1,a1091.4C由an为等比数列,得a3a5a,所以a4(a41),解得a42,设等比数列an的公比为q,则a4a1q3,得2q3,解得q2,所以a2a1q.选C.5C由题设,amSmSm12,am1Sm1Sm3.因为数列an为等差数列所以公差dam1am1.由Sm0,得m(a12)0,则a12.又ama1(m1)d2,解得m5.6A因为a,b为函数f(x)x2pxq(p0,q0)的两个不同的零点,所以所以a0,b0,所以当2在中间时,a,b,2这三个数不可能成等差数列,且只有当2在中间时,a,b,2这三个数才能成等比数列经分
5、析知,a,b,2或b,a,2或2,a,b或2,b,a成等差数列,a,2,b或b,2,a成等比数列不妨取数列a,b,2成等差数列,数列a,2,b成等比数列,则有解得或(舍去),所以所以pq9.76a12,an12an,数列an是以公比q2,首项a12的等比数列则Sn126,解得n6.827由已知数列an是以1为首项,以为公差的等差数列S99191827.91三个正数a,b,c成等比数列,b2ac(52)(52)1.b为正数,b1.10解(1)由题设知a1a4a2a38.又a1a49.可解得或(舍去)由a4a1q3得公比q2,故ana1qn12n1.(2)Sn2n1,又bn,所以Tnb1b2bn1.11解(1)设等差数列an的公差为d,由已知得解得所以ana1(n1)dn2.(2)由(1)可得bn2nn,所以b1b2b3b10(21)(222)(233)(21010)(22223210)(12310)(2112)55211532 101.12解(1)设数列an的公差为d,令n1,得,所以a1a23.令n2,得,所以a2a315.解得a11,d2,所以an2n1.(2)由(1)知bn2n22n1n4n,所以Tn141242n4n,所以4Tn142243n4n1,两式相减,得3Tn41424nn4n1n4n14n1.所以Tn4n1.