1、 数 学H单元解析几何 H1直线的倾斜角与斜率、直线的方程6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20Cxy30 Dxy306D20、2014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积20解:(1)圆C的方程可化为x2(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则CM(x,y4),MP(2x,2y)由题设知CMMP0,故x(2x)(y4)(2y)
2、0,即(x1)2(y3)22.由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM.因为ON的斜率为3,所以直线l的斜率为,故l的方程为yx.又|OM|OP|2 ,O到直线l的距离为,故|PM|,所以POM的面积为.21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两
3、个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图1521解:(1)设F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易
4、知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1)再由F1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在满足题设条件的圆,其方程为x2.H2两直线的位置关系与点到直线的距离6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20
5、 Bxy20Cxy30 Dxy306D18、2014江苏卷 如图16所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO.(1)求新桥BC的长(2)当OM多长时,圆形保护区的面积最大?图1618解: 方法一:(1)如图所示, 以O为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy.由条件知A(0, 60), C(170,0),直
6、线 BC 的斜率kBCtanBCO.又因为 ABBC, 所以直线AB的斜率kAB.设点 B 的坐标为(a,b),则kBC, kAB,解得a80, b120,所以BC150.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m, OMd m (0d60)由条件知, 直线BC的方程为y(x170),即4x3y6800.由于圆M与直线BC相切, 故点 M(0, d)到直线BC的距离是r,即r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时, r 最大, 即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大方法二:(1)如图所示, 延长 OA
7、, CB 交于点F.因为 tanFCO,所以sinFCO, cosFCO.因为OA60,OC170,所以OFOC tanFCO, CF, 从而AFOFOA.因为OAOC, 所以cosAFB sinFCO.又因为 ABBC,所以BFAFcosAFB, 从而BCCFBF150.因此新桥BC的长是150 m.(2)设保护区的边界圆 M与BC的切点为D,连接 MD,则MDBC,且MD是圆M的半径,并设MDr m,OMd m (0d60)因为OAOC, 所以sinCFOcosFCO.故由(1)知sinCFO, 所以r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时,
8、 r最大,即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大22、2014全国卷 已知抛物线C:y22px(p0)的焦点为F,直线y4与 y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程22解:(1)设Q(x0,4),代入y22px,得x0,所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2,所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x,得y24my40.设A(x1,y1),B(
9、x2,y2),则y1y24m,y1y24.故线段AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又直线l的斜率为m,所以l的方程为xy2m23.将上式代入y24x,并整理得y2 y4(2m23)0.设M(x3,y3),N(x4,y4),则y3y4,y3y44(2m23)故线段MN的中点为E,|MN|y3y4|.由于线段MN垂直平分线段AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)2,化简得m210,解得m1或m1.所求直线l的方程为xy10或xy10.21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦
10、点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图1521解:(1)设F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆
11、心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1)再由F1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在
12、满足题设条件的圆,其方程为x2.H3圆的方程6,2014福建卷 已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20 Bxy20Cxy30 Dxy306D172014湖北卷 已知圆O:x2y21和点A(2,0),若定点B(b,0)(b2)和常数满足:对圆O上任意一点M,都有|MB|MA|,则(1)b_;(2)_17(1)(2)18、2014江苏卷 如图16所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m经
13、测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO.(1)求新桥BC的长(2)当OM多长时,圆形保护区的面积最大?图1618解: 方法一:(1)如图所示, 以O为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy.由条件知A(0, 60), C(170,0),直线 BC 的斜率kBCtanBCO.又因为 ABBC, 所以直线AB的斜率kAB.设点 B 的坐标为(a,b),则kBC, kAB,解得a80, b120,所以BC150.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m, OMd m (0d60)由条件知
14、, 直线BC的方程为y(x170),即4x3y6800.由于圆M与直线BC相切, 故点 M(0, d)到直线BC的距离是r,即r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时, r 最大, 即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大方法二:(1)如图所示, 延长 OA, CB 交于点F.因为 tanFCO,所以sinFCO, cosFCO.因为OA60,OC170,所以OFOC tanFCO, CF, 从而AFOFOA.因为OAOC, 所以cosAFB sinFCO.又因为 ABBC,所以BFAFcosAFB, 从而BCCFBF150.因
15、此新桥BC的长是150 m.(2)设保护区的边界圆 M与BC的切点为D,连接 MD,则MDBC,且MD是圆M的半径,并设MDr m,OMd m (0d60)因为OAOC, 所以sinCFOcosFCO.故由(1)知sinCFO, 所以r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时, r最大,即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大20、2014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A
16、,B两点,若PAB的面积为2,求C的标准方程20解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线的交点分别为,其围成的三角形的面积S.由xy42x0y0知当且仅当x0y0时x0y0有最大值,即S有最小值,因此点P的坐标为(,)(2)设C的标准方程为1(ab0),点A(x1,y1),B(x2,y2)由点P在C上知1,并由得b2x24x62b20.又x1,x2是方程的根,所以由y1x1,y2x2,得|AB|x1x2|.由点P到直线l的距离为及SPAB|AB|2,得|AB|,即b49b2180,解得b2
17、6或3,因此b26,a23(舍)或b23,a26,从而所求C的方程为1.20、2014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积20解:(1)圆C的方程可化为x2(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则CM(x,y4),MP(2x,2y)由题设知CMMP0,故x(2x)(y4)(2y)0,即(x1)2(y3)22.由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22.(2)由(1)可知M的轨迹是以点N(
18、1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM.因为ON的斜率为3,所以直线l的斜率为,故l的方程为yx.又|OM|OP|2 ,O到直线l的距离为,故|PM|,所以POM的面积为.H4直线与圆、圆与圆的位置关系52014浙江卷 已知圆x2y22x2ya0截直线xy20所得弦的长度为4,则实数a的值是()A2 B4 C6 D85B62014安徽卷 过点P(,1)的直线l与圆x2y21有公共点,则直线l的倾斜角的取值范围是()A. B.C. D.6D72014北京卷 已知圆C:(x3)2(y4)21和两点A(m,0),B(m,0)(m0)若圆
19、C上存在点P,使得APB90,则m的最大值为()A7 B6C5 D47B11,2014福建卷 已知圆C:(xa)2(yb)21,平面区域:若圆心C,且圆C与x轴相切,则a2b2的最大值为()A5 B29C37 D4911C 212014福建卷 已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论21解:方法一:(1)设S(x,y)为曲线上任意一点依
20、题意,点S到点F(0,1)的距离与它到直线y1的距离相等,所以曲线是以点F(0,1)为焦点,直线y1为准线的抛物线,所以曲线的方程为x24y.(2)当点P在曲线上运动时,线段AB的长度不变证明如下:由(1)知抛物线的方程为yx2.设P(x0,y0)(x00),则y0x,由yx,得切线l的斜率ky|xx0x0,所以切线l的方程为yy0x0(xx0),即yx0xx.由得A.由得M.又N(0,3),所以圆心C,半径r|MN|,|AB|.所以点P在曲线上运动时,线段AB的长度不变方法二:(1)设S(x,y)为曲线上任意一点,则|y(3)|2.依题意,点S(x,y)只能在直线y3的上方,所以y3,所以y
21、1,化简得,曲线的方程为x24y.(2)同方法一62014湖南卷 若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21 B19 C9 D116C解析 依题意可得C1(0,0),C2(3,4),则|C1C2|5.又r11,r2,由r1r215,解得m9.92014江苏卷 在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_9. 解析 由题意可得,圆心为(2,1),r2,圆心到直线的距离d ,所以弦长为22 .18、2014江苏卷 如图16所示,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区规划要求:新桥BC与河岸AB垂直;保护区的边界
22、为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tanBCO.(1)求新桥BC的长(2)当OM多长时,圆形保护区的面积最大?图1618解: 方法一:(1)如图所示, 以O为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy.由条件知A(0, 60), C(170,0),直线 BC 的斜率kBCtanBCO.又因为 ABBC, 所以直线AB的斜率kAB.设点 B 的坐标为(a,b),则kBC, kAB,解得a80, b120,所以BC150.因此新桥B
23、C的长是150 m.(2)设保护区的边界圆M的半径为r m, OMd m (0d60)由条件知, 直线BC的方程为y(x170),即4x3y6800.由于圆M与直线BC相切, 故点 M(0, d)到直线BC的距离是r,即r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时, r 最大, 即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大方法二:(1)如图所示, 延长 OA, CB 交于点F.因为 tanFCO,所以sinFCO, cosFCO.因为OA60,OC170,所以OFOC tanFCO, CF, 从而AFOFOA.因为OAOC, 所以cos
24、AFB sinFCO.又因为 ABBC,所以BFAFcosAFB, 从而BCCFBF150.因此新桥BC的长是150 m.(2)设保护区的边界圆 M与BC的切点为D,连接 MD,则MDBC,且MD是圆M的半径,并设MDr m,OMd m (0d60)因为OAOC, 所以sinCFOcosFCO.故由(1)知sinCFO, 所以r.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10d35.故当d10时, r最大,即圆面积最大,所以当OM10 m时, 圆形保护区的面积最大16、2014全国卷 直线l1和l2是圆x2y22的两条切线若l1与l2的交点为(1,3),则l1与l2的夹角的正
25、切值等于_16.122014新课标全国卷 设点M(x0,1),若在圆O:x2y21上存在点N,使得OMN45,则x0的取值范围是()A. 1,1 B. C. , D. 12A20、2014全国新课标卷 已知点P(2,2),圆C:x2y28y0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及POM的面积20解:(1)圆C的方程可化为x2(y4)216,所以圆心为C(0,4),半径为4.设M(x,y),则CM(x,y4),MP(2x,2y)由题设知CMMP0,故x(2x)(y4)(2y)0,即(x1)2(y3)22
26、.由于点P在圆C的内部,所以M的轨迹方程是(x1)2(y3)22.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM.因为ON的斜率为3,所以直线l的斜率为,故l的方程为yx.又|OM|OP|2 ,O到直线l的距离为,故|PM|,所以POM的面积为.142014山东卷 圆心在直线x2y0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为_14(x2)2(y1)24142014重庆卷 已知直线xya0与圆心为C的圆x2y22x4y40相交于A,B两点,且ACBC,则实数a的值为_140或
27、69、2014四川卷 设mR,过定点A的动直线xmy0和过定点B的动直线mxym30交于点P(x,y),则|PA|PB|的取值范围是()A,2 B,2 C,4 D2,4 9B21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由图1521解:(1)设F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1
28、F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,y1),(x11,y1)再由F1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得
29、x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在满足题设条件的圆,其方程为x2.H5椭圆及其几何性质21、2014重庆卷 如图15,设椭圆1(ab0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1F1F2,2,DF1F2的面积为.(1)求该椭圆的标准方程(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请
30、说明理由图1521解:(1)设F1(c,0),F2(c,0),其中c2a2b2.由2得|DF1|c.从而SDF1F2|DF1|F1F2|c2,故c1.从而|DF1|.由DF1F1F2得|DF2|2|DF1|2|F1F2|2,因此|DF2|,所以2a|DF1|DF2|2,故a,b2a2c21.因此,所求椭圆的标准方程为y21.(2)如图所示,设圆心在y轴上的圆C与椭圆y21相交,P1(x1,y1),P2(x2,y2)是两个交点,y10,y20,F1P1,F2P2是圆C的切线,且F1P1F2P2.由圆和椭圆的对称性,易知,x2x1,y1y2.由(1)知F1(1,0),F2(1,0),所以(x11,
31、y1),(x11,y1)再由F1P1F2P2得(x11)2y0.由椭圆方程得1(x11)2,即3x4x10,解得x1或x10.当x10时,P1,P2重合,题设要求的圆不存在当x1时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1F1P1,得1.而y1|x11|,故y0.圆C的半径|CP1|.综上,存在满足题设条件的圆,其方程为x2.20、2014安徽卷 设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值20解: (1)f(x)的定义域为(,),f(x)1a2
32、x3x2.令f(x)0,得x1,x2,且x1x2,所以f(x)3(xx1)(xx2)当xx2时,f(x)0;当x1x0.故f(x)在和 内单调递减,在内单调递增(2)因为a0,所以x10,当a4时,x21,由(1)知,f(x)在0,1上单调递增,所以f(x)在x0和x1处分别取得最小值和最大值当0a4时,x21,由(1)知,f(x)在0,x2上单调递增,在x2,1上单调递减,因此f(x)在xx2处取得最大值又f(0)1,f(1)a,所以当0a1时,f(x)在x1处取得最小值;当a1时,f(x)在x0和x1处同时取得最小值;当1ab0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(
33、2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程20、2014湖南卷 如图15所示,O为坐标原点,双曲线C1:1(a10,b10)和椭圆C2:1(a2b20)均过点P,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形(1)求C1,C2的方程(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|AB| ?证明你的结论. 图1520解: (1)设C2的焦距为2c2,由题意知,2c22,2a12,从而a11,c21.因为点P在双曲线x21上,所以1,故b3.由椭圆的定义知2a22.于是a2,bac2.故C1,C2的方
34、程分别为x21,1.(2)不存在符合题设条件的直线(i)若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x或x.当x时,易知A(,),B(,),所以|2,|2.此时,|.当 x时,同理可知,|.(ii)若直线l不垂直于x轴,设l的方程为ykxm,由得(3k2)x22kmxm230.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1x2,x1x2.于是y1y2k2x1x2km(x1x2)m2.由得(2k23)x24kmx2m260.因为直线l与C2只有一个公共点,所以上述方程的判别式16k2m28(2k23)(m23)
35、0.化简,得2k2m23.因此x1x2y1y20,于是222222,即|2|2.故|.综合(i),(ii)可知,不存在符合题设条件的直线17、2014江苏卷 如图15所示,在平面直角坐标系xOy中,F1,F2分别是椭圆1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且BF2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值图1517解: 设椭圆的焦距为2c, 则 F1(c, 0), F2(c, 0)(1)因为B(0, b), 所以BF2a.又BF2, 故a.因为点C在椭圆上,所以1,解得
36、b21.故所求椭圆的方程为y21.(2)因为B(0, b), F2(c, 0)在直线 AB 上,所以直线 AB 的方程为 1.解方程组得所以点 A 的坐标为.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为.因为直线 F1C的斜率为,直线AB的斜率为,且F1CAB,所以1.又b2a2c2,整理得a25c2,故e2,因此e.142014江西卷 设椭圆C:1(ab0)的左右焦点分别为F1,F2,过F2作x轴的垂线与C相交于A,B两点,F1B与y轴相交于点D.若ADF1B,则椭圆C的离心率等于_14.解析 由题意A,B,F1(c,0),则直线F1B的方程为y0(xc)令x0,得y,即D,
37、则向量DA,.因为ADF1B,所以2c20,即2acb2(a2c2),整理得(e1)(e)0,所以e(e0)故椭圆C的离心率为.20、2014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A,B两点,若PAB的面积为2,求C的标准方程20解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线的交点分别为,其围成的三角形的面积S.由xy42x0y0知当且仅当x0
38、y0时x0y0有最大值,即S有最小值,因此点P的坐标为(,)(2)设C的标准方程为1(ab0),点A(x1,y1),B(x2,y2)由点P在C上知1,并由得b2x24x62b20.又x1,x2是方程的根,所以由y1x1,y2x2,得|AB|x1x2|.由点P到直线l的距离为及SPAB|AB|2,得|AB|,即b49b2180,解得b26或3,因此b26,a23(舍)或b23,a26,从而所求C的方程为1.92014全国卷 已知椭圆C:1(ab0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为4 ,则C的方程为()A.1 B.y21C.1 D.19A解析 根
39、据题意,因为AF1B的周长为4,所以|AF1|AB|BF1|AF1|AF2|BF1|BF2|4a4,所以a.又因为椭圆的离心率e,所以c1,b2a2c2312,所以椭圆C的方程为1.202014新课标全国卷 设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.20解:(1)根据c及题设知M,2b23ac.将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.(2)由题意知,原点O为F1F2的中点,MF2y轴,所以直
40、线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|得|DF1|2|F1N|.设N(x1,y1),由题意知y1b0)的离心率为,直线yx被椭圆C截得的线段长为.(1)求椭圆C的方程(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点)点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数使得k1k2,并求出的值;(ii)求OMN面积的最大值21解:(1)由题意知,可得a24b2.椭圆C的方程可简化为x24y2a2.将yx代入可得x.因此,即a2,所以b1,所以椭圆C的方程为
41、y21.(2)(i)设A(x1,y1)(x1y10),D(x2,y2),则B(x1,y1)因为直线AB的斜率kAB,且ABAD,所以直线AD的斜率k.设直线AD的方程为ykxm,由题意知k0,m0.由消去y,得(14k2)x28mkx4m240,所以x1x2,因此y1y2k(x1x2)2m.由题意知x1x2,所以k1.所以直线BD的方程为yy1(xx1)令y0,得x3x1,即M(3x1,0)可得k2.所以k1k2,即.因此,存在常数使得结论成立(ii)直线BD的方程yy1(xx1),令x0,得yy1,即N.由(i)知M(3x1,0),所以OMN的面积S3|x1|y1|x1|y1|.因为|x1|
42、y1|y1,当且仅当|y1|时,等号成立,此时S取得最大值,所以OMN面积的最大值为.20、2014陕西卷 已知椭圆1(ab0)经过点(0,),离心率为,左、右焦点分别为F1(c,0),F2(c,0)(1)求椭圆的方程;(2)若直线l:yxm与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足,求直线l的方程图1520解: (1)由题设知解得椭圆的方程为1.(2)由题设,以F1F2为直径的圆的方程为x2y21,圆心(0,0)到直线l的距离d.由d1,得|m|,(*)|CD|22.设A(x1,y1),B(x2,y2),由得x2mxm230,由根与系数的关系得x1x2m,x1x2m2
43、3,|AB|.由,得1,解得m,满足(*)直线l的方程为yx或yx.20、2014四川卷 已知椭圆C:1(ab0)的左焦点为F(2,0),离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积20解:(1)由已知可得,c2,所以a.又由a2b2c2,解得b,所以椭圆C的标准方程是1.(2)设T点的坐标为(3,m),则直线TF的斜率kTFm.当m0时,直线PQ的斜率kPQ,直线PQ的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式设P(x1,y1),Q(x2,y2),
44、将直线PQ的方程与椭圆C的方程联立,得消去x,得(m23)y24my20,其判别式16m28(m23)0.所以y1y2,y1y2,x1x2m(y1y2)4.因为四边形OPTQ是平行四边形,所以,即(x1,y1)(3x2,my2)所以解得m1.此时,四边形OPTQ的面积S四边形OPTQ2SOPQ2|OF|y1y2|2 2 .18、2014天津卷 设椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|2,求椭圆的方程18解
45、:(1)设椭圆右焦点F2的坐标为(c,0)由|AB|F1F2|,可得a2b23c2.又b2a2c2,则,所以椭圆的离心率e.(2)由(1)知a22c2,b2c2,故椭圆方程为1.设P(x0,y0)由F1(c,0),B(0,c),有(x0c,y0),(c,c)由已知,有0,即(x0c)cy0c0.又c0,故有x0y0c0.因为点P在椭圆上,所以1.由和可得3x4cx00.而点P不是椭圆的顶点,故x0c,代入得y0,即点P的坐标为.设圆的圆心为T(x1,y1),则x1c,y1c,进而圆的半径rc.由已知,有|TF2|2|MF2|2r2.又|MF2|2,故有8c2,解得c23,所以所求椭圆的方程为1
46、.H6双曲线及其几何性质82014重庆卷 设F1,F2分别为双曲线1(a0,b0)的左、右焦点,双曲线上存在一点P使得(|PF1|PF2|)2b23ab,则该双曲线的离心率为()A. B. C4 D.8D102014北京卷 设双曲线C的两个焦点为(,0),(,0),一个顶点是(1,0),则C的方程为_10x2y2182014广东卷 若实数k满足0k0,b0)的焦距为2c,右顶点为A,抛物线x22py(p0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|c,则双曲线的渐近线方程为_15yx112014四川卷 双曲线 y21的离心率等于_11.62014天津卷 已知双曲线1(a0,
47、b0)的一条渐近线平行于直线l:y2x10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.1 B.1C.1 D.16AH7抛物线及其几何性质102014四川卷 已知F为抛物线y2x的焦点,点A,B在该抛物线上且位于x轴的两侧,2(其中O为坐标原点),则ABO与AFO面积之和的最小值是()A2 B3 C. D.10B32014安徽卷 抛物线yx2的准线方程是()Ay1 By2 Cx1 Dx23A212014福建卷 已知曲线上的点到点F(0,1)的距离比它到直线y3的距离小2.(1)求曲线的方程(2)曲线在点P处的切线l与x轴交于点A,直线y3分别与直线l及y轴交于点M,N.以MN为直径作圆
48、C,过点A作圆C的切线,切点为B.试探究:当点P在曲线上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论21解:方法一:(1)设S(x,y)为曲线上任意一点依题意,点S到点F(0,1)的距离与它到直线y1的距离相等,所以曲线是以点F(0,1)为焦点,直线y1为准线的抛物线,所以曲线的方程为x24y.(2)当点P在曲线上运动时,线段AB的长度不变证明如下:由(1)知抛物线的方程为yx2.设P(x0,y0)(x00),则y0x,由yx,得切线l的斜率ky|xx0x0,所以切线l的方程为yy0x0(xx0),即yx0xx.由得A.由得M.又N(0,3),所以圆心C,半径r|MN|
49、,|AB|.所以点P在曲线上运动时,线段AB的长度不变方法二:(1)设S(x,y)为曲线上任意一点,则|y(3)|2.依题意,点S(x,y)只能在直线y3的上方,所以y3,所以y1,化简得,曲线的方程为x24y.(2)同方法一 11、2014广东卷 曲线y5ex3在点(0,2)处的切线方程为_115xy20 22、2014湖北卷 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围22解:(1)设点M(x,y),依题
50、意得|MF|x|1,即|x|1,化简整理得y22(|x|x)故点M的轨迹C的方程为y2(2)在点M的轨迹C中,记C1:y24x(x0),C2:y0(x0)依题意,可设直线l的方程为y1k(x2)由方程组可得ky24y4(2k1)0.当k0时,y1.把y1代入轨迹C的方程,得x.故此时直线l:y1与轨迹C恰好有一个公共点.当k0时,方程的判别式16(2k2k1)设直线l与x轴的交点为(x0,0),则由y1k(x2),令y0,得x0.(i)若由解得k.即当k(,1)时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点(ii)若或由解得k或k0.即当k时,直线l与C1
51、只有一个公共点,与C2有一个公共点当k时,直线l与C1有两个公共点,与C2没有公共点故当k时,直线l与轨迹C恰好有两个公共点(iii)若由解得1k或0k0,b0)的焦距为2c,右顶点为A,抛物线x22py(p0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|c,则双曲线的渐近线方程为_15yx112014陕西卷 抛物线y24x的准线方程为_11x122、2014浙江卷 已知ABP的三个顶点都在抛物线C:x24y上,F为抛物线C的焦点,点M为AB的中点,3FM.图16(1)若|PF|3,求点M的坐标;(2)求ABP面积的最大值22解:(1)由题意知焦点F(0,1),准线方程为y1
52、.设P(x0,y0),由抛物线定义知|PF|y01,得到y02,所以P(2,2)或P(2,2)由PF3FM,分别得M或M.(2)设直线AB的方程为ykxm,点A(x1,y1),B(x2,y2),P(x0,y0)由得x24kx4m0,于是16k216m0,x1x24k,x1x24m,所以AB中点M的坐标为(2k,2k2m)由3,得(x0,1y0)3(2k,2k2m1),所以由x4y0得k2m.由0,k20,得f.所以,当m时,f(m)取到最大值,此时k.所以,ABP面积的最大值为.H8直线与圆锥曲线(AB课时作业)20、2014安徽卷 设函数f(x)1(1a)xx2x3,其中a0.(1)讨论f(
53、x)在其定义域上的单调性;(2)当x0,1时,求f(x)取得最大值和最小值时的x的值20解: (1)f(x)的定义域为(,),f(x)1a2x3x2.令f(x)0,得x1,x2,且x1x2,所以f(x)3(xx1)(xx2)当xx2时,f(x)0;当x1x0.故f(x)在和 内单调递减,在内单调递增(2)因为a0,所以x10,当a4时,x21,由(1)知,f(x)在0,1上单调递增,所以f(x)在x0和x1处分别取得最小值和最大值当0a4时,x21,由(1)知,f(x)在0,x2上单调递增,在x2,1上单调递减,因此f(x)在xx2处取得最大值又f(0)1,f(1)a,所以当0a1时,f(x)
54、在x1处取得最小值;当a1时,f(x)在x0和x1处同时取得最小值;当1a0,x1x24k,x1x24m,所以AB中点M的坐标为(2k,2k2m)由3,得(x0,1y0)3(2k,2k2m1),所以由x4y0得k2m.由0,k20,得f.所以,当m时,f(m)取到最大值,此时k.所以,ABP面积的最大值为.20、2014广东卷 已知椭圆C:1(ab0)的一个焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程8、2014湖北卷 设a,b是关于t的方程t2cos tsin 0的两个不等实根,则过A(a,
55、a2),B(b,b2)两点的直线与双曲线1的公共点的个数为()A0 B1C2 D38A解析 由方程t2cos tsin 0,解得t10,t2tan ,不妨设点A(0,0),B(tan ,tan2),则过这两点的直线方程为yxtan ,该直线恰是双曲线1的一条渐近线,所以该直线与双曲线无公共点故选A22、2014湖北卷 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围22解:(1)设点M(x,y),依题意得|MF|
56、x|1,即|x|1,化简整理得y22(|x|x)故点M的轨迹C的方程为y2(2)在点M的轨迹C中,记C1:y24x(x0),C2:y0(x0)依题意,可设直线l的方程为y1k(x2)由方程组可得ky24y4(2k1)0.当k0时,y1.把y1代入轨迹C的方程,得x.故此时直线l:y1与轨迹C恰好有一个公共点.当k0时,方程的判别式16(2k2k1)设直线l与x轴的交点为(x0,0),则由y1k(x2),令y0,得x0.(i)若由解得k.即当k(,1)时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点(ii)若或由解得k或k0.即当k时,直线l与C1只有一个公共
57、点,与C2有一个公共点当k时,直线l与C1有两个公共点,与C2没有公共点故当k时,直线l与轨迹C恰好有两个公共点(iii)若由解得1k或0kb0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且BF2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值图1517解: 设椭圆的焦距为2c, 则 F1(c, 0), F2(c, 0)(1)因为B(0, b), 所以BF2a.又BF2, 故a.因为点C在椭圆上,所以1,解得b21.故所求椭圆的方程为y21.(2)因为B(0, b), F2(c, 0)在直线
58、 AB 上,所以直线 AB 的方程为 1.解方程组得所以点 A 的坐标为.又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为.因为直线 F1C的斜率为,直线AB的斜率为,且F1CAB,所以1.又b2a2c2,整理得a25c2,故e2,因此e.202014江西卷 如图12所示,已知抛物线C:x24y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点)(1)证明:动点D在定直线上(2)作C的任意一条切线l(不含x轴),与直线y2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2|MN1|2为定值,并求此定值图1220解:
59、(1)依题意可设AB的方程为ykx2,代入x24y,得x24(kx2),即x24kx80.设A(x1,y1),B(x2,y2),则有x1x28.直线AO的方程为yx,BD的方程为xx2,解得交点D的坐标为.注意到x1x28及x4y1,则有y2,因此D点在定直线y2上(x0)(2)依题意,切线l的斜率存在且不等于0.设切线l的方程为yaxb(a0),代入x24y得x24(axb),即x24ax4b0.由0得(4a)216b0,化简整理得ba2.故切线l的方程可写为yaxa2.分别令y2,y2,得N1,N2的坐标为N1,N2,则|MN2|2|MN1|2428,即|MN2|2|MN1|2为定值8.1
60、52014辽宁卷 已知椭圆C:1,点M与C的焦点不重合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|BN|_151220、2014辽宁卷 圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图15所示)图15(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:yx交于A,B两点,若PAB的面积为2,求C的标准方程20解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线的交点分别为,其围成的三角形的面积S.由xy42x0y0知
61、当且仅当x0y0时x0y0有最大值,即S有最小值,因此点P的坐标为(,)(2)设C的标准方程为1(ab0),点A(x1,y1),B(x2,y2)由点P在C上知1,并由得b2x24x62b20.又x1,x2是方程的根,所以由y1x1,y2x2,得|AB|x1x2|.由点P到直线l的距离为及SPAB|AB|2,得|AB|,即b49b2180,解得b26或3,因此b26,a23(舍)或b23,a26,从而所求C的方程为1.22、2014全国卷 已知抛物线C:y22px(p0)的焦点为F,直线y4与 y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B
62、两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程22解:(1)设Q(x0,4),代入y22px,得x0,所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2,所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x,得y24my40.设A(x1,y1),B(x2,y2),则y1y24m,y1y24.故线段AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又直线l的斜率为m,所以l的方程为xy2m23.将上式代入y24x,并整理得y2 y4(2m23)0.设M(x3,y3),N(x4,y4
63、),则y3y4,y3y44(2m23)故线段MN的中点为E,|MN|y3y4|.由于线段MN垂直平分线段AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)2,化简得m210,解得m1或m1.所求直线l的方程为xy10或xy10.202014新课标全国卷 设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.20解:(1)根据c及题设知M,2b23ac.将b2a2c
64、2代入2b23ac,解得,2(舍去)故C的离心率为.(2)由题意知,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|得|DF1|2|F1N|.设N(x1,y1),由题意知y1b0)的离心率为,直线yx被椭圆C截得的线段长为.(1)求椭圆C的方程(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点)点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数使得k1k2,并求出的值;(ii)求OMN面积的最大值21解:(1)由题意知,可
65、得a24b2.椭圆C的方程可简化为x24y2a2.将yx代入可得x.因此,即a2,所以b1,所以椭圆C的方程为y21.(2)(i)设A(x1,y1)(x1y10),D(x2,y2),则B(x1,y1)因为直线AB的斜率kAB,且ABAD,所以直线AD的斜率k.设直线AD的方程为ykxm,由题意知k0,m0.由消去y,得(14k2)x28mkx4m240,所以x1x2,因此y1y2k(x1x2)2m.由题意知x1x2,所以k1.所以直线BD的方程为yy1(xx1)令y0,得x3x1,即M(3x1,0)可得k2.所以k1k2,即.因此,存在常数使得结论成立(ii)直线BD的方程yy1(xx1),令
66、x0,得yy1,即N.由(i)知M(3x1,0),所以OMN的面积S3|x1|y1|x1|y1|.因为|x1|y1|y1,当且仅当|y1|时,等号成立,此时S取得最大值,所以OMN面积的最大值为.20、2014陕西卷 已知椭圆1(ab0)经过点(0,),离心率为,左、右焦点分别为F1(c,0),F2(c,0)(1)求椭圆的方程;(2)若直线l:yxm与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足,求直线l的方程图1520解: (1)由题设知解得椭圆的方程为1.(2)由题设,以F1F2为直径的圆的方程为x2y21,圆心(0,0)到直线l的距离d.由d1,得|m|,(*)|CD
67、|22.设A(x1,y1),B(x2,y2),由得x2mxm230,由根与系数的关系得x1x2m,x1x2m23,|AB|.由,得1,解得m,满足(*)直线l的方程为yx或yx.20、2014四川卷 已知椭圆C:1(ab0)的左焦点为F(2,0),离心率为.(1)求椭圆C的标准方程;(2)设O为坐标原点,T为直线x3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积20解:(1)由已知可得,c2,所以a.又由a2b2c2,解得b,所以椭圆C的标准方程是1.(2)设T点的坐标为(3,m),则直线TF的斜率kTFm.当m0时,直线PQ的斜率kPQ,直线P
68、Q的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m23)y24my20,其判别式16m28(m23)0.所以y1y2,y1y2,x1x2m(y1y2)4.因为四边形OPTQ是平行四边形,所以,即(x1,y1)(3x2,my2)所以解得m1.此时,四边形OPTQ的面积S四边形OPTQ2SOPQ2|OF|y1y2|2 2 .18、2014天津卷 设椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶
69、点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|2,求椭圆的方程18解:(1)设椭圆右焦点F2的坐标为(c,0)由|AB|F1F2|,可得a2b23c2.又b2a2c2,则,所以椭圆的离心率e.(2)由(1)知a22c2,b2c2,故椭圆方程为1.设P(x0,y0)由F1(c,0),B(0,c),有(x0c,y0),(c,c)由已知,有0,即(x0c)cy0c0.又c0,故有x0y0c0.因为点P在椭圆上,所以1.由和可得3x4cx00.而点P不是椭圆的顶点,故x0c,代入得y0,即点P的坐标为.设圆的圆心为T(x1,y1),则x1c,y1c,进而圆的半
70、径rc.由已知,有|TF2|2|MF2|2r2.又|MF2|2,故有8c2,解得c23,所以所求椭圆的方程为1.H9曲线与方程122014福建卷 在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L距离”定义为|P1P2|x1x2|y1y2|,则平面内与x轴上两个不同的定点F1,F2的“L距离”之和等于定值(大于|F1F2|)的点的轨迹可以是() AB CD图1412A22、2014湖北卷 在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(2,1),求直线l与轨迹C恰好有一个公共
71、点、两个公共点、三个公共点时k的相应取值范围22解:(1)设点M(x,y),依题意得|MF|x|1,即|x|1,化简整理得y22(|x|x)故点M的轨迹C的方程为y2(2)在点M的轨迹C中,记C1:y24x(x0),C2:y0(x0)依题意,可设直线l的方程为y1k(x2)由方程组可得ky24y4(2k1)0.当k0时,y1.把y1代入轨迹C的方程,得x.故此时直线l:y1与轨迹C恰好有一个公共点.当k0时,方程的判别式16(2k2k1)设直线l与x轴的交点为(x0,0),则由y1k(x2),令y0,得x0.(i)若由解得k.即当k(,1)时,直线l与C1没有公共点,与C2有一个公共点,故此时
72、直线l与轨迹C恰好有一个公共点(ii)若或由解得k或k0.即当k时,直线l与C1只有一个公共点,与C2有一个公共点当k时,直线l与C1有两个公共点,与C2没有公共点故当k时,直线l与轨迹C恰好有两个公共点(iii)若由解得1k或0k.即当k时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点综上所述,当k(,1)0时,直线l与轨迹C恰好有一个公共点;当k时,直线l与轨迹C恰好有两个公共点;当k时,直线l与轨迹C恰好有三个公共点 H10 单元综合20、2014湖南卷 如图15所示,O为坐标原点,双曲线C1:1(a10,b10)和椭圆C2:1(a2b20)均过点P
73、,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形(1)求C1,C2的方程(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|AB| ?证明你的结论. 图1520解: (1)设C2的焦距为2c2,由题意知,2c22,2a12,从而a11,c21.因为点P在双曲线x21上,所以1,故b3.由椭圆的定义知2a22.于是a2,bac2.故C1,C2的方程分别为x21,1.(2)不存在符合题设条件的直线(i)若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x或x.当x时,易知A(,),B(,),所以|2,|2.此时,|.当 x时,同理可知,|.(ii)若直线l不垂直于x轴,设l的方程为ykxm,由得(3k2)x22kmxm230.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1x2,x1x2.于是y1y2k2x1x2km(x1x2)m2.由得(2k23)x24kmx2m260.因为直线l与C2只有一个公共点,所以上述方程的判别式16k2m28(2k23)(m23)0.化简,得2k2m23.因此x1x2y1y20,于是222222,即|2|2.故|.综合(i),(ii)可知,不存在符合题设条件的直线