收藏 分享(赏)

《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc

上传人:高**** 文档编号:719807 上传时间:2024-05-30 格式:DOC 页数:18 大小:1.55MB
下载 相关 举报
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第1页
第1页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第2页
第2页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第3页
第3页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第4页
第4页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第5页
第5页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第6页
第6页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第7页
第7页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第8页
第8页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第9页
第9页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第10页
第10页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第11页
第11页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第12页
第12页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第13页
第13页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第14页
第14页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第15页
第15页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第16页
第16页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第17页
第17页 / 共18页
《解析》山东省博兴县第一中学2019-2020学年高一下学期开学检测数学试题 WORD版含解析.doc_第18页
第18页 / 共18页
亲,该文档总共18页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家2019级高一数下学期教学质量诊断检测数学试题(B)一、单项选择题:本题共8小题,每小题5分,共40分1.若复数满足:,则( )A. 1B. C. D. 2【答案】B【解析】【分析】根据复数满足的等式化简变形,结合复数除法运算即可化简得,根据复数模的定义及运算即可求解.【详解】复数满足,则,由复数除法运算化简可得,由复数模的定义及运算可得,故选:B.【点睛】本题考查了复数模的定义,复数的除法运算,属于基础题.2.已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()A. B. 2C. D. 【答案】A【解析】【

2、分析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.3.若,且,那么是( )A. 直角三角形 B. 等边三角形C. 等腰三角形D. 等腰直角三角形【答案】B【解析】【详解】解析:由题设可得由题设可得,即该三角形是等边三角形,应选答案B4.已知正方体的棱长为1,则该正方体外接球的体积与其内切球表面积之比为( )A. B. C. D. 【答案】D【解析】【分析】由正方体性质知,它的外接球的半径为,内切球的半径为,利用球体

3、积,表面积公式计算得结果.【详解】由正方体性质知,它的外接球的半径为,内切球的半径为,:2故选:D【点睛】本题主要考查了正方体的性质,球的体积,表面积的计算,属于基础题.5.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则 A. B. C. D. 【答案】D【解析】【分析】由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.6.设l是直线,是两个不同的平面,下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】利用空间线线、线面、面面的位置关系对选项

4、进行逐一判断,即可得到答案.【详解】A.若,则与可能平行,也可能相交,所以不正确.B.若,则与可能的位置关系有相交、平行或,所以不正确.C.若,则可能,所以不正确.D.若,由线面平行的性质过的平面与相交于,则,又.所以,所以有,所以正确.故选:D【点睛】本题考查面面平行、垂直判断,线面平行和垂直的判断,属于基础题.7.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )A. B. C. D. 【答案】B【解析】【分析】根据空余部分体积相等列出等式即可求解.【详解】在图1中

5、,液面以上空余部分体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.8.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的余弦值等于( )A. B. C. D. 【答案】B【解析】【分析】连接,设侧棱与底面边长都等于,计算,再根据点到底面的距离等于点到底面的距离,求解与底面所成角的正弦值,即可.【详解】如图所示,设三棱柱的侧棱与底面边长都等于.连接,则.在中,得.在中,即,则为等边三角形,所以.在菱形中,得.又因为点到底面的距离等于点到底面的距离所以与底面所成角的正弦值为.即与底面所成角的余弦值为.故选:B【点睛】本

6、题考查直线与平面所成角的问题,属于中档题题.二、多项选择题:本题共4小题,每小题5分,共20分9.(多选题)已知集合,其中i为虚数单位,则下列元素属于集合M的是( )A. B. C. D. 【答案】BC【解析】【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,.选项A中,;选项B中,;选项C中,;选项D中,.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.10.在下列向量组中,不能把向量表示出来的是( )A. ,B. ,C. ,D. ,【答案】ACD【解析】【分析】根据向量坐标运算,如果

7、选项中的两个向量是共线向量,则不能把向量表示出来.【详解】对A,零向量与任何向量都是共线向量,故 ,不能做为一组基底,故A不能;对B, ,不共线,故B能对C, ,不能做为一组基底,故C不能对D,不能做为一组基底,故D不能故选:ACD【点睛】本题主要考查向量共线的坐标运算、平面向量基本定理的应用,解题的关键是判断向量是否共线,属于基础题11.下列说法正确的是( )A. 在中,B. 在中,若,则C. 在中,若,则;若,则D. 在中,【答案】ACD【解析】【分析】由正弦定理,二倍角正弦函数公式逐一分析各个选项,即可得答案【详解】对于A,由正弦定理,可得:,故A正确;对于B,由,可得,或,即,或,或,

8、故B错误;对于C,在中,由正弦定理可得,因此是的充要条件,故C正确;对于D,由正弦定理,可得右边左边,故D正确故选:ACD【点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,考查了转化思想,属于基础题12.如图,在长方体中,分别为棱,的中点,则下列说法正确的是( )A. 四点共面B. 平面平面C. 直线与所成角的为D. 平面【答案】BC【解析】【分析】根据、是异面直线可判断A;根据面面垂直的判定定理可判断B;取的中点 ,连接、,即可判断C;根据线面平行的判定定理即可判断D.【详解】对于A,由图显然、是异面直线,故四点不共面,故A错误;对于B,由题意平面,故平面平面,故B正确

9、;对于C,取的中点,连接、,可知三角形为等边三角形,故C正确; 对于D,平面,显然与平面不平行,故D错误;故选:BC【点睛】本题主要考查了线面、面面之间的位置关系,属于基础题.三、填空题:本题共4小题,每小题5分,共20分13.设,则方程的解为_.【答案】【解析】【分析】先设(为虚数单位),代入方程,得到,根据复数相等,列出方程组求解,即可得出结果.【详解】设(为虚数单位),则可化为,即,则,解得:,因此.故答案为:.【点睛】本题主要考查求方程的解,熟记复数的运算法则,以及复数相等的充要条件即可,属于常考题型.14.设的内角,的对边分别为,若,且,则的面积为_.【答案】【解析】【分析】根据正弦

10、定理,结合两角和的正弦公式、三角形的面积公式进行求解即可.【详解】由得,即,化简得,为三角形的内角,故.故答案为:【点睛】本题考查了三角形面积公式的应用,考查了两角和的正弦公式,考查了正弦定理的应用,考查了数学运算能力.15.如图,一栋建筑物AB高(30-10)m,在该建筑物的正东方向有一个通信塔CD在它们之间的地面M点(B、M、D三点共线)测得对楼顶A、塔顶C的仰角分别是15和60,在楼顶A处测得对塔顶C的仰角为30,则通信塔CD的高为_m【答案】60【解析】【分析】由已知可以求出、的大小,在中,利用锐角三角函数,可以求出.在中,运用正弦定理,可以求出.在中,利用锐角三角函数,求出.【详解】

11、由题意可知:,由三角形内角和定理可知.在中,.在中,由正弦定理可知:,在中,.【点睛】本题考查了锐角三角函数、正弦定理,考查了数学运算能力.16.已知平面向量,且,若为平面单位向量,则的最小值为_.【答案】【解析】【分析】通过已知条件求出向量平面向量,的夹角,设出向量,化简斜率的数量积,然后利用两角和与差的三角函数转化求解即可【详解】解:由,且,得,设,因为,所以,的最小值为.故答案为:【点睛】本题考查向量的数量积的应用,三角函数的性质的应用,属于中档题四、解答题:本题共6小题,共70分解答应写出文字说明17.已知,.(1)求与的夹角;(2)求.【答案】(1)(2)【解析】【分析】(1)由已知

12、可以求出的值,进而根据数量积的夹角公式,求出,进而得到向量与的夹角;(2)要求,我们可以根据(1)中结论,先求出值,然后开方求出答案【详解】(1),向量与的夹角.(2),.【点睛】本题考查数量积表示两个向量的夹角、向量的模,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力18.已知复数(为虚数单位).(1)若,求复数的共轭复数;(2)若是关于的方程一个虚根,求实数的值.【答案】(1);(2)2【解析】分析:(1)因为,所以,求出,即可得到的共轭复数;(2)将代入方程,根据复数相等可求求实数的值.详解:(1)因为,所以,所以复数的共轭复数为.(2)因为是关于的方程的一个虚根,所

13、以,即.又因为是实数,所以.点睛:本题考查了复数的运算法则、复数相等的充要条件、共轭复数的定义,考查了计算能力,属于基础题19.如图,四棱锥的底面是边长为1的正方形,垂直于底面,.(1)求平面与平面所成二面角的大小;(2)设棱的中点为,求异面直线与所成角的大小.【答案】(1);(2).【解析】【分析】(1)根据题意可证明,所以即为平面与平面所成二面角的平面角,结合线段关系即可求得的大小;(2)根据题意,可证明和,从而由线面垂直的判定定理证明平面,即可得,所以异面直线与所成角为.【详解】(1)由题意可知底面是边长为1的正方形,则,又因为垂直于底面,平面,则,由于,则平面,而平面,所以,则即为平面

14、与平面所成二面角的平面角,由可知,在中,;(2)由,且,为棱的中点,所以由等腰三角形性质可知,又因为,且,所以平面,而平面,所以,而且,所以平面,而平面,所以,则异面直线与垂直,所以异面直线与的夹角为.【点睛】本题考查了平面与平面形成的二面角求法,异面直线的夹角求法,由线面垂直判断线线垂直的方法,直线与平面垂直的判定,属于基础题.20.在锐角中,分别是角所对的边,且.(1)求角的大小;(2)若,且的面积为,求的值.【答案】(1);(2) .【解析】【分析】(1)由,利用正弦定理可得,结合是锐角可得结果;(2)由,可得,再利用余弦定理可得结果.【详解】(1)因为所以由正弦定理得,因为,所以,因为

15、是锐角,所以.(2)由于,又由于,所以.【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到21.如图,在平面直角坐标系中,(1)求点B,C的坐标;(2)求证:四边形OABC为等腰梯形【答案】(1),;(2)详见解析.【解析】【分析】(1)先求解B点坐标,再利用,即得解;(2)利用坐标,可得,分析即得解【详解】(1)设,则,(2)证明:连接OC,又,四边形OABC为等腰梯形【点睛】本题考查了向量在

16、几何中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22.如图,四棱锥中,平面分别为线段的中点.(1)求证:平面;(2)求证:平面平面【答案】(1)证明见详解(2)证明见详解【解析】【分析】(1)设交点为,连接,则可根据是中位线求证,进而得证;(2)由线段关系可证,又由平面可得,进而可得,再结合四边形是菱形可得,即可求证;【详解】(1)设交点为,连接,又,又,所以四边形是菱形,则是中点,又为中点,是中位线,平面,平面,平面;(2)由(1)可知四边形是菱形,又平面可得,为中点可得,又,四边形为平行四边形,平面,又平面,平面平面【点睛】本题考查线面平行面面垂直的证明,属于中档题高考资源网版权所有,侵权必究!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3