1、 课题圆柱、圆锥、圆台和球(一)课时安排1 课时教学目标1、圆柱、圆锥、圆台概念,2、理解圆柱、圆锥、圆台的性质重点理解圆柱、圆锥、圆台的概念和性质难点圆柱、圆锥、圆台的性质的运用方法讲授、研讨法教学过程教学过程一、基本概念多媒体演示图形。思考:这个几何体的外部曲面是如何形成的?几何体是如何形成的? 旋转面可看作一条曲线绕一条定直线旋转一周所形成的轨迹,这条定直线叫做旋转轴,简称轴.这条曲线叫做旋转面的母线.封闭的旋转面所围成的几何体叫做旋转体.旋转体也可以看作是由一封闭的平面图形包括其内部绕一条定直线旋转一周所形成的轨迹.请学生思考:圆柱、圆锥、圆台可由什么平面图形如何运动而成?定义1:(线
2、动成面,面围成体)圆柱、圆锥、圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周形成的曲面所围成的几何体.旋转轴叫做所围成的几何体的轴;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面;无论旋转到什么位置,这条边都叫做侧面的母线.定义2:(面动成体)以矩形的一边所在的直线为旋转轴将矩形及其内部旋转一周所形成的轨迹叫做圆柱;以直角三角形的一直角边所在的直线为旋转轴将直角三角形及其内部旋转一周所形成的轨迹叫做圆锥;以直角梯形的一直角边所在的直线为旋转轴将直角梯形及其
3、内部旋转一周所形成的轨迹叫做圆台.圆柱、圆锥、圆台之间有何关系?(教师演示,学生观察总结)平行于底面截圆锥可以得到圆台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.圆台的上底变大可以得到圆柱;圆台的上底变小可以得到圆锥.让学生举出一些圆柱、圆锥、圆台的实例,以及其他旋转体的实例.让学生思考:如图,一个半圆面绕其直径所在直线旋转一周所形成的几何体是什么?一个圆面绕一条直线旋转一周形成的几何体是什么? 二、主要性质三、巩固练习1下列命题中的真命题是( )(A)以直角三角形的一边为轴旋转所得的旋转体是圆锥;(B)以直角梯形的一腰为轴旋转所得的旋转体是圆台;(C)圆柱、圆锥、圆台
4、的底面都是圆;(D)圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半径.2判断下列命题是否正确?平行于圆锥某一母线的截面是等腰三角形;平行于圆台某一母线的截面是等腰梯形;过圆锥顶点的截面是等腰三角形;过圆台上底面中心的截面是等腰梯形.3长为4,宽为3的矩形绕其一边所在直线旋转一周所得圆柱的侧面积为_.4若圆锥的侧面展开图是一个半圆面,则圆锥的母线与轴的夹角的大小为_.5.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1 :4,截去的圆锥的母线长是3cm,球圆台的母线长.课堂小结a) 圆柱、圆锥、圆台可以分别看作以矩形的一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周形成的曲面所围成的几何体b) 圆柱、圆锥、圆台的定义c) 圆柱、圆锥、圆台的性质作业板书设计教后记