收藏 分享(赏)

2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx

上传人:a**** 文档编号:711834 上传时间:2025-12-13 格式:DOCX 页数:24 大小:411.60KB
下载 相关 举报
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第1页
第1页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第2页
第2页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第3页
第3页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第4页
第4页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第5页
第5页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第6页
第6页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第7页
第7页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第8页
第8页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第9页
第9页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第10页
第10页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第11页
第11页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第12页
第12页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第13页
第13页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第14页
第14页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第15页
第15页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第16页
第16页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第17页
第17页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第18页
第18页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第19页
第19页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第20页
第20页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第21页
第21页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第22页
第22页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第23页
第23页 / 共24页
2022年解析卷人教版九年级数学上册期中测评试题 A卷(解析卷).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、抛物线y3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C(2,

2、5)D(2,5)2、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x23、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三象限D第四象限4、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2个D1个或2个5、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根二、多选题(5小题,每小题4分,共计20分)1、如果一种变换是将抛物线向右平移2个单位或向上平

3、移1个单位,我们把这种变换称为抛物线的简单变换已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()Ay=x21By=x2+6x+5Cy=x2+4x+4Dy=x2+8x+172、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD3、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A当c=0时,函数的图象经过原点;B当c0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C函数图象最高点的纵坐标是;D当b=0时,函数的图象关于y轴

4、对称4、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 Ab24ac0B4a2b+c0C2cb=3Da+3=c5、二次函数的图像如图所示,下列结论中正确的是()ABC抛物线与x轴的另一个交点为D第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_3、如图,二次函数yax2+bx+c的图象经过点A

5、(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)4、如图,在平面直角坐标系中,坐标原点为O,抛物线ya(x2)21(a0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则AOB的面积为_5、抛物线的图象和轴有交点,则的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、解下列方程:(1);(2)2、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值 线 封 密 内 号学级年名姓 线 封 密 外 (2)小明说二次函数图象的顶点

6、在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:3、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?4、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗

7、,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)5、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人

8、160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?-参考答案-一、单选题1、C【解析】【分析】根据二次函数的性质ya(xh)2+k的顶点坐标是(h,k)进行求解即可.【详解】抛物线解析式为y=3(x-2)2+5,二次函数图象的顶点坐标是(2,5)故选C【考点】本题考查了二次函数的性质,根据抛物

9、线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴), 线 封 密 内 号学级年名姓 线 封 密 外 最大(最小)值,增减性等2、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键3、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y

10、轴正半轴相交可知c0,对称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题4、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.5、B 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】将按

11、照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.二、多选题1、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案【详解】解:A、yx21,先向上平移1个单位得到yx2,再向上平移1个单位可以得到yx21,故A符合题意;B、yx26x5(x3)24,右移3个单位,再上移

12、5得到yx21,故B不符合题意;C、yx24x4(x2)2,先向右平移2个单位得到y(x22)2x2,再向上平移1个单位得到yx21,故C符合题意;D、yx28x17(x4)21,先向右平移2个单位得到y(x42)21,再向右平移1个单位得到y(x42-2)21x21,故D符合题意故选:ACD【点睛】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反2、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两

13、部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得, 线 封 密 内 号学级年名姓 线 封 密 外 进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C【点睛】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系3、ABD【解析】【分析】根据c与0的关系判断二次函数yax2bxc与y轴交点的情况;根据

14、顶点坐标与抛物线开口方向判断函数的最值;根据函数yax2c的图象与yax2图象相同,判断函数yax2c的图象对称轴【详解】解:A.c是二次函数yax2bxc与y轴的交点,所以当c0时,函数的图象经过原点;B.c0时,二次函数yax2bxc与y轴的交点在y轴的正半轴,又因为函数的图象开口向下,所以方程ax2bxc0必有两个不相等的实根;C.当a0时,函数图象最高点的纵坐标是;当a0时,函数图象最低点的纵坐标是;由于a值不定,故无法判断最高点或最低点;D.当b0时,二次函数yax2bxc变为yax2c,又因为yax2c的图象与yax2图象相同,所以当b0时,函数的图象关于y轴对称故选:ABD【点睛

15、】二次函数yax2bxc最值,掌握当a0时,函数的最大值是;当a0时,函数的最小值是是解题关键4、ABC【解析】【分析】根据抛物线的图象与性质即可判断【详解】抛物线与x轴有两个交点,0,b2-4ac0,故A选项错误;x=-2时,y0,x=-2时,y=4a-2b+c0,故B选项错误;顶点为(-1,3),y=a-b+c=3,把代入得,化简得,故C选项错误;把代入得,化简得,故D选项正确;不正确的是ABC;故选:ABC 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型5、AD【解析】【分析】根据抛物线的对称轴为

16、直线,则可对A进行判断;利用,函数值为负,可对B进行判断;通过求点关于直线的对称点,可对C进行判断;由抛物线开口向上得到,则,再由抛物线与轴的交点在轴下方得到,即可对D进行判断【详解】解:A、抛物线的对称轴为直线,即,选项说法正确,符合题意;B、由抛物线的对称性可,知时,即,选项说法错误,不符合题意;C、点关于直线的对称点,抛物线与x轴的另一个交点为,选项说法错误,不符合题意;D、抛物线开口向上,又抛物线与轴的交点在轴下方,选项说法正确,符合题意;故选AD【点睛】本题考查了二次函数的图像与性质,解题的关键是熟练运用二次函数的图像与系数的关系三、填空题1、y3x22或y3x22【解析】【分析】根

17、据二次函数的图象特点即可分类求解【详解】二次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等2、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点

18、】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 3、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最

19、大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键4、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可【详解】设AB交x轴于C抛物线线ya(x2)21(a0)的顶点为A, 线 封 密 内 号学级年名姓 线 封 密 外 A(2,1),过点A作y轴的平行线交抛物线于点B,B的横坐标为2,OC=2把x=2代入得y=-3,B(2,-3),AB=1+3=4,故答案为:4【考点】本题考查了二次函数图象上点的坐标特征,求得A、B的坐标是解题的关键5、且【解析】【分

20、析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数四、解答题1、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解 线 封 密 内

21、号学级年名姓 线 封 密 外 代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键2、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函

22、数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键3、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(

23、元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题 线 封 密 内 号学级年名姓 线 封 密 外 【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,

24、最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题4、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销售收入销售价销售量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,1

25、5),(30,12.5)代入,可得:,解得:,y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为;(3)设销售总利润为W,整理,可得:,0,当时,W有最大值为,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份

26、的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1