1、【考纲下载】能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图)2方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为(如图)3方向角相对于某一正方向的水平角(1)北偏东,即由指北方向顺时针旋转到达目标方向(如图);(2)北偏西,即由指北方向逆时针旋转到达目标方向;(3)南偏西等其他方向角类似4坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图,角为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度)坡度又称为坡比1“仰角、俯角是相对水平线而
2、言的,而方位角是相对于正北方向而言的”这种说法正确吗?提示:正确2“方位角和方向角其实质是一样的,均是确定观察点与目标点之间的位置关系”,这种说法是否正确?提示:正确1从A处望B处的仰角为,从B处望A处的俯角为,则与的关系为()A BC90 D180解析:选B根据仰角和俯角的定义可知.2(教材习题改编)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为()Aa km B.a kmC.a km D2a km解析:选B在ABC中,由余弦定理得AB2AC2BC22ACBCcosACBa2a22a2cos
3、 1203a2,故|AB|a.3在上题的条件下,灯塔A在灯塔B的方向为()A北偏西5 B北偏西10C北偏西15 D北偏西20解析:选B由题意可知AB30,又CB与正南方向线的夹角为40,故所求角为403010,即灯塔A在灯塔B的方向为北偏西10.4一船自西向东航行,上午10时到达灯塔P的南偏西75,距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船航行的速度为_海里/小时解析:由题意知,在PMN中, PM68海里,MPN7545120,MNP45.由正弦定理,得,解得MN34海里,故这只船航行的速度为海里 海里/小时答案:5某运动会开幕式上举行升旗仪式,在坡度为15的看台上,同
4、一列上的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为10 米(如图所示),则旗杆的高度为_米解析:如图,在ABC中,ABC105,所以ACB30.由正弦定理得,所以BC2020 m,在RtCBD中,CDBCsin 602030 m.答案:30 数学思想(六)数形结合思想在解三角形中的应用三角函数在实际生活中有着相当广泛的应用,三角函数的应用题是以解三角形、正(余)弦定理、正(余)弦函数等知识为核心,以测量、航海、筑路、天文等为代表的实际应用题是高考应用题的热点题型求解此类问题时,应仔细审题,提炼题目信息,画出示意图,利用数形结合的思想并借助正弦定理、余弦定理、勾
5、股定理、三角函数、不等式等知识求解典例(2014广州模拟)在一个特定时段内,以点E为中心的7海里以内的海域被设为警戒水域点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A的北偏东45且与点A相距40 海里的位置B,经过40分钟又测得该船已行驶到点A的北偏东(45)其中sin ,090且与点A相距10 海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶判断它是否会进入警戒水域,并说明理由解题指导根据题意画出示意图,然后利用正、余弦定理求解解(1)如图所示,AB40,AC10,BAC,sin .因为090,所以cos ,BC10
6、.所以该船的行驶速度为15 海里/小时(2)法一:如图所示,以A为原点建立平面直角坐标系,设点B,C的坐标分别是B(x1,y1),C(x2,y2),BC与x轴的交点为D.由题设,得x1y1AB40,x2ACcosCAD10cos(45)30,y2ACsinCAD10sin(45)20.所以过点B,C的直线l的斜率k2,直线l的方程为y2x40.又点E(0,55)到直线l的距离d37,所以船会进入警戒水域法二:如图所示,设直线AE与BC的延长线相交于点Q.在ABC中,由余弦定理,得cosABC.所以sinABC .在ABQ中,由正弦定理,得AQ40.由于AE5540AQ,所以点Q位于点A和点E之
7、间,且QEAEAQ15.过点E作EPBC于点P,则EP为点E到直线BC的距离在RtQPE中,PEQEsinPQEQEsinAQCQEsin(45ABC)1537.所以船会进入警戒水域题后悟道1.对于问题(1),知道两边夹一角,由余弦定理求得BC的长,除以行驶时间即可求得速度;对于问题(2),延长BC交直线AE于点Q,然后在ABQ中,由正弦定理求得AQ的长、判断点Q的位置,最后在QPE中结合已知条件即可作出判断2解此类问题,根据题意合理画出示意图是解题关键;将条件归纳到某一三角形中是基本的策略;合理运用正、余弦定理并注意与平面几何相关知识结合有助于问题的解决某海域内一观测站A,某时刻测得一艘匀速
8、直线行驶的船只位于点A北偏东50且与A相距80海里的位置B,经过1小时又测得该船已行驶到点A北偏东50其中sin ,090且与A相距60海里的位置C.(1)求该船的行驶速度;(2)若该船不改变航行方向继续向前行驶,求船在行驶过程中离观测站A的最近距离解:(1)如图,AB80,AC60,BAC,sin .由于090,所以cos .由余弦定理得BC40海里/小时,所以该船的行驶速度为40海里/小时(2)在ABC中,由正弦定理得,则sin B60,过A作BC的垂线,交BC的延长线于D,则AD的长是船离观测站的最近距离在RtABD中,ADABsin B8015 海里,故船在行驶过程中离观测站A的最近距离为15 海里.