ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:938KB ,
资源ID:711408      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-711408-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省唐山市第十一中学2019-2020学年高二数学下学期寒假调研试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

河北省唐山市第十一中学2019-2020学年高二数学下学期寒假调研试题(含解析).doc

1、河北省唐山市第十一中学2019-2020学年高二数学下学期寒假调研试题(含解析)一.选择题1. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. B. C. D. 【答案】C【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和,所以几何体的表面积为考点:三视图与表面积2. 已知直线a,b分别在两个不同的平面,内则“直线a和直线b相交”是“平面和平面相交”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】当“直线a和直线b相交”时,平面和平面必有公共点,即平面和平面相交,充分性成立

2、;当“平面和平面相交”,则 “直线a和直线b可以没有公共点”,即必要性不成立.故选A.3. 点(1,-1)到直线x-y+1=0的距离是( )A. B. C. D. 【答案】D【解析】【分析】先判断点(1,-1)不在直线上,再利用点到直线的距离求解即可.【详解】由题意得点(1,-1)不在直线上,所以点(1,-1)到直线的距离为故选:D【点睛】本题主要考查点到直线距离的求法,意在考查学生对该知识的理解掌握水平.4. 命题“”的否定是( )A. B. C. D. 【答案】A【解析】【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A选项正

3、确.故选A.【点睛】本小题主要考查全称命题与特称命题的否定,属于基础题.5. 已知为抛物线上的动点,点在轴上的射影为,点的坐标是,则的最小值是 ( )A. B. C. D. 【答案】B【解析】【详解】依题意可知焦点F(0,),准线为y,延长PM交准线于H点则|PF|PH|,|PM|PH|,|PM|PA|PF|PA|,即求|PF|PA|的最小值因为|PF|PA|FA|,又|FA| 10.所以|PM|PA|10.故选B.6. 已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于、两点,是坐标原点若,则双曲线的离心率为()A. B. C. D. 【答案】D【解析】设右焦点则由对称性知即所以解得故选C

4、二.填空题7. 已知直线:与:垂直,则的值是_.【答案】1或4【解析】 直线与垂直, ,化简可得 ,解得k=1或k=48. 已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为_【答案】8【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.三.解答题9. 在平面直角坐标系中,曲线与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线交于A

5、,B两点,且,求a的值.【答案】(1)(2)【解析】【分析】(1)求出曲线与坐标轴的三个交点,根据这三个交点在圆上可求出圆心坐标和半径,从而可得圆的方程;(2)设A,B,联立直线与圆的方程,根据根与系数的关系可得,根据得,化为,进而可解得 .【详解】(1)曲线与坐标轴的交点为(0,1),(,0),由题意可设圆C的圆心坐标为(3,),解得,圆C的半径为,圆C的方程为.(2)设点A、B的坐标分别为A,B,其坐标满足方程组,消去得到方程,由已知得,判别式,由根与系数的关系得,由得.又,可化为,将代入解得,经检验,满足,即,.【点睛】本题考查了由圆上三个点的坐标求圆的方程,考查了直线与圆的位置关系、根

6、与系数的关系,考查了运算求解能力,属于中档题.10. 如图,四棱锥中,平面,为线段上一点,为中点(I)证明平面;(II)求四面体的体积.【答案】()证明见解析;().【解析】试题分析:()取的中点,然后结合条件中的数据证明四边形为平行四边形,从而得到,由此结合线面平行的判断定理可证;()由条件可知四面体N-BCM的高,即点到底面的距离为棱的一半,由此可顺利求得结果试题解析:()由已知得,取的中点,连接,由为中点知,.又,故平行且等于,四边形为平行四边形,于是.因为平面,平面,所以平面. ()因为平面,为中点,所以到平面的距离为. 取的中点,连结.由得,.由得到的距离为,故.所以四面体的体积.

7、【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解11. 如图,菱形的对角线与交于点,点分别在上,交于点,将沿折到位置,.(1)证明:平面;(2)求二面角的正弦值.【答案】(1)证明见解析;(2).【解析】【详解】试题分析:(1)证明线面垂直,一般利用线面垂直判定定理,即利用线线垂直进行论证,而线线垂直的寻找与论证往往需要利用平几条件,如本题需

8、利用勾股定理经计算得出线垂直(2)一般可利用空间向量的数量积求二面角的大小, 首先根据题意建立恰当的直角坐标系,设立各点坐标,利用方程组解出各面的法向量,再根据向量数量积求出两个法向量的夹角的余弦值,最后根据二面角与法向量夹角关系确定二面角的余弦值.试题解析:(1)由已知得,,又由得,故,因此 ,从而.由得. 由得.所以,. 于,故.又,而, 所以平面. 如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则 , . 设是平面的法向量, 则,即,可取. 设是平面的法向量, 则,即,可取 于是, 设二面角的大小为,.因此二面角的正弦值是. 点睛:利用法向量求解空间线面角的关键在于“四破”

9、:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.12. 已知点A(0,2),椭圆E: (ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.【答案】(1) (2) 【解析】试题分析:设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式

10、求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,. 又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3