1、京改版八年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知 ,则 的值是()ABC2D-22、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C
2、40D253、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D44、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或65、在四个实数,0,中,最小的实数是()AB0CD二、多选题(5小题,每小题4分,共计20分)1、下列计算正确的是()ABCD2、在直角三角形中,若两边的长分别为1,2,则第三边的边长为()A3BCD13、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米
3、,米,那么,间的距离可能是()A5米B8.7米C27米D18米4、下列运算不正确的是()ABCD5、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、25的算数平方根是_,的相反数为_2、函数y=中,自变量x的取值范围是_3、如图,若ABCADE,且135,则2_4、我国元代数学家朱世杰的著作四元玉鉴中记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽”其大意为:用6210文钱请人代买一批椽如果每株椽的运费是3文,那么少拿一株椽
4、后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是_5、如图,等边ABC的边长为6,点D是AB上一动点,过点D作DEAC交BC于E,将BDE沿着DE翻折得到,连接,则的最小值为_四、解答题(5小题,每小题8分,共计40分)1、有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板(1)求剩余木料的面积(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出 块这样的木条2、计算:(1)(2)3、如图,D是ABC的边AC上一点,点E在AC的延长线上,EDAC,过点E作E
5、FAB,并截取EFAB,连接DF求证:DF=CB4、平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,点在第一象限,连接交轴于点,连接(1)请通过计算说明;(2)求证;(3)请直接写出的长为 5、先化简,再求值:(x1+),其中x为满足3x的整数解-参考答案-一、单选题1、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键2、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考
6、查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键3、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的
7、大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键4、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答5、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,
8、0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小二、多选题1、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.2、BC【解析】【分析】分两种情况讨论:当第三边为直角边或斜边时,再利用勾股定理可得结论.【详解】解:当直角三角形的第三边
9、为斜边时:则第三边为:当直角三角形的第三边为直角边时,则为斜边,则第三边为: 故第三边为:或.故选:【考点】本题考查的是勾股定理的应用,有清晰的分类讨论思想是解题的关键.3、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键4、ABD【解析】【分析】根据二次根式的性质以及二次根式的运算法则化简和计算可得结果【详解
10、】解:A、,运算不正确,符合题意;B、,运算不正确,符合题意;C、,运算正确,不符合题意;D、,运算错误,符合题意;故选:ABD【考点】本题考查了二次根式的性质以及二次根式的运算,熟练运用运算法则是解本题的关键5、ABC【解析】【分析】根据实数与数轴,有理数与无理数的定义,平方根和立方根的定义进行逐一判断即可【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与
11、无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解三、填空题1、 5 3【解析】【分析】根据算术平方根的定义和实数的相反数分别填空即可【详解】25的算数平方根是5;的相反数为3;故答案为:5,3【考点】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键2、x1【解析】【分析】根据分式中分母不等于0列式求解即可.【详解】解:根据题意得, x-10,解得x1.故答案为: x1.【考点】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母
12、不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、35【解析】【分析】根据全等的性质可得:EADCAB,再根据等式的基本性质可得1235.【详解】解:ABCADE,EADCAB,EADCADCABCAD,2135故答案为35【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.4、【解析】【分析】根据单价=总价 数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【详解】依据题意,得:故答案为:【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.5、3【解析】【分析】先找出B点变
13、化的规律,可发现B在ABC的角平分线上运动,故AB取最小值时,B点在AC中点上【详解】如图,DEAC,ABC是等边三角形,BDE是等边三角形,折叠后的BDE也是等边三角形,过B作DE的垂直平分线,BDBE,BDBE,BB都在DE 的垂直平分线上,AB最小,即A到DE的垂直平分线的距离最小,此时ABBB,AB=AC=1263,即AB的最小值是3故答案为:3【考点】本题主要考查等边三角形和垂直平分线的性质,掌握和理解等边三角形性质是本题关键四、解答题1、(1)剩余木料的面积为6dm2;(2)2【解析】【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(2)估算 和 的大小,结合题意解答即
14、可.【详解】解:(1)两个正方形的面积分别为18dm2和32dm2,这两个正方形的边长分别为3dm和4dm,剩余木料的面积为(43)36(dm2);(2)434.5,12,从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2【考点】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.2、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数以内的各种运算法则,
15、是解题的关键3、证明过程见解析【解析】【分析】根据EFAB,得到,再根据已知条件证明,即可得解;【详解】EFAB,在和中,;【考点】本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键4、(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:5【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键5、,当x3时,原式【解析】【分析】根据分式的加减法和除法可以化简题目中的式子,然后从中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:,x+10,(x+2)(x2)0,x1,x2,3xx可以是3,当x=3时,原式【考点】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法