1、京改版八年级数学上册期末综合测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD2、化简的结果是()AaBa+1Ca1Da213、平面
2、内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D84、如图,在中,则的长为()ABCD5、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C40D25二、多选题(5小题,每小题4分,共计20分)1、实数a,b,c,d在数轴上的对应点的位置如图所示,则不正确的结论是()Aa3b3B3c3dC1a1cDbd02、下列命题中,真命题是()A两个锐角对应相等的两个直角三角形全等B斜边及一锐角对应相等的两个直角三角形全等C两条直角边对应相等的两个直角三角形全等D一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等3、如图
3、是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中一定成立的是()AABDACDBAF垂直平分EGCB=CDDEEG4、以下几个数中无理数有()ABCDE5、在直角三角形中,若两边的长分别为1,2,则第三边的边长为()A3BCD1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合若BC=8,CD=6,则CF的长为_2、如图a是长方形纸带,DEF16,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的CFE的度数是_3、计算_4、如图,若,则线段长为_ 5、如图,直线为线段的垂直平分线,交于,在
4、直线上取一点,使得,得到第一个三角形;在射线上取一点,使得;得到第二个三角形;在射线上取一点,使得,得到第三个三角形依次这样作下去,则第2020个三角形中的度数为_四、解答题(5小题,每小题8分,共计40分)1、解方程:(1)(2)2、如图,点E在BC上,且,(1)求证:;(2)判断AC和BD的位置关系,并说明理由3、观察下列等式,探究其中的规律:+1,+,+,+,(1)按以上规律写出第个等式:_;(2)猜想并写出第n个等式:_;(3)请证明猜想的正确性4、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣
5、传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?5、细心观察下图,认真分析各式,然后解答问题,;,;,(1)直接写出:_(2)请用含有(是正整数)的等式表示上述变化规律:_=_,_;(3)求出的值-参考答案-一、单选题1、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是
6、锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键2、B【解析】【分析】先把原式转化成同分母的分式,然后相加,运用平方差公式把分子因式分解,然后分子分母同时除以公因式(a-1)即可.【详解】解
7、:原式= ,故本题答案为:B.【考点】分式的化简是本题的考点,运用平方差公式把分子进行因式分解找到分子分母的公因式是解题的关键.3、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键4、B【解析】【分析】根据等腰三角形性质求出B,求出BAC,求出DAC=C,求出AD
8、=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长5、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角
9、和定理,熟记角平分线的性质定理是解题的关键二、多选题1、ABD【解析】【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论【详解】解:由实数a,b,c,d在数轴上的对应点的位置可知,ab,a3b3,故A选项符合题意;cd,3c3d,故B选项符合题意;ac,1a1c,故C选项不符合题意;bd,bd0,故D选项符合题意;故选ABD【考点】本题考查了实数与数轴和不等式的基本性质,观察数轴,逐一分析四个选项的正误是解题的关键2、BCD【解析】【分析】判定两个直角三角形全等的方法有:SSS、AAS、ASA、HL四种,对每个选项依次判定解
10、答【详解】解:A、两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等;故本项错误; B、斜边及一锐角对应相等,构成了AAS,能判定全等;故本项正确; C、两条直角边对应相等,构成了SAS,能判定全等;故本项正确; D、一条直角边和另一条直角边上的中线对应相等,可得另一直角边也相等,构成了SAS,能判定全等;故本项正确; 故选BCD【考点】本题主要考查两个直角三角形全等的判定,解决本题的关键是要熟练掌握全等三角形的判定.3、ABC【解析】【分析】认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明DEG是等边三角形【详解】解:A、因为
11、此图形是轴对称图形,则ABDACD正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,BC,正确;D、题目中没有60条件,不能判断是等边三角形,故不能得到DEEG错误故选:ABC【考点】本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键4、BE【解析】【分析】根据有理数和无理数的定义逐项判断即可得【详解】解:A、,2是有理数,此项不符题意;B、是无理数,此项符合题意;C、是分数,属于有理数,此项不符题意;D、是无限循环小数,是有理数,此项不符题意;E、是无理数,此选项符合题意;故选BE【考点】本题考查了无理数和有理数的定义,熟记定
12、义是解题关键5、BC【解析】【分析】分两种情况讨论:当第三边为直角边或斜边时,再利用勾股定理可得结论.【详解】解:当直角三角形的第三边为斜边时:则第三边为:当直角三角形的第三边为直角边时,则为斜边,则第三边为: 故第三边为:或.故选:【考点】本题考查的是勾股定理的应用,有清晰的分类讨论思想是解题的关键.三、填空题1、【解析】【分析】设,在中利用勾股定理求出x即可解决问题【详解】解:是的中点,由折叠的性质知:,设,则, 在中,根据勾股定理得:,即:,解得,故答案为:【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型2、1
13、32#132度【解析】【分析】先由矩形的性质得出BFEDEF16,再根据折叠的性质得出CFG1802BFE,由CFECFGEFG即可得出答案【详解】解:四边形ABCD是矩形,ADBC,BFEDEF16,CFECFGEFG1802BFEEFG180316132,故答案为:132【考点】本题考查了翻折变换的性质、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键3、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则4、8【解析】【分析】过点D作DHAC于H,由等腰三角形的性质可得AH
14、=HC,DAC=DCA=30,由直角三角形的性质可证DH=CF,由“AAS”可证DHEFCE,可得EH=EC,即可求解【详解】解:如图,过点D作DHAC于H, 在DHE和FCE中, 故答案为8【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键5、【解析】【分析】根据前3个三角形总结出的规律,利用规律即可解题.【详解】第一个三角形中,第二个三角形中,同理,第三个三角形中,第2020个三角形中的度数为故答案为【考点】本题主要考查垂直平分线的性质,根据垂直平分线的性质找到规律是解题的关键.四、解答题1、(1)x=;(2)x=【解析】【分析】各分式方程
15、去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1),去分母,得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根2、 (1)见解析(2),理由见解析【解析】【分析】(1)运用SSS证明即可;(2)由(1)得,根据内错角相等,两直线平行可得结论(1)在和中,(SSS);(2)AC和BD的位置关系是,理由如下:,【考点】本题主要考查了全
16、等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键3、(1)+;(2)+;(3)证明见解析【解析】【分析】(1)仔细观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,据此进一步整理即可得出答案;(2)根据(1)中的规律直接进行归纳总结即可;(3)利用分式的运算法则进行计算验证即可.【详解】(1)观察四个等式,可以发现第一个数的分母为连续的奇数,第二个数的分母为连续的偶数,第三个分母为连续的自然数,第个等式为:+,故答案为:+;(2)根据(1)中规律总结归纳可得:+,故答案为:+;(3)证明:对等式左边进行运算可得:+=,等式
17、右边,左边右边,+成立【考点】本题主要考查了分式运算中数字的变化规律,根据题意正确找出相应的规律是解题关键.4、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能听到宣传;(2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键5、 (1)(2)(3)【解析】【分析】(1)由给出的数据写出的长即可; (2)由(1)和S1、S2、S3Sn,找出规律即可得出结果; (3)首先求出再求和即可(1)解:; 故答案为:;(2) ,;,;,归纳总结可得: 故答案为:(3), 【考点】本题主要考查勾股定理的理解,实数的运算规律探究,掌握“从具体到一般的探究方法”是解本题的关键