1、全 称 量 词 想一想?13241)32)213),34),21xxxR xxZx下列语句是命题吗?)与),)与)之间有什么关系?对所有的对任意一个短语“所有的”“任意一个”在逻辑中通常叫做全称量词用符号“”表示。含有全称量词的命题,叫做全称命题。1,212nn例如:)对任意是奇数。)所有的正方形都是矩形。是整数是整数常见的全称量词还有“一切”“每一个”“任给”“所有的”等.M通常,将含有变量x的语句用p(x)、q(x)、r(x)表示,变量x的全称命题“对中任意一个x,取值范围有p(x用M表示。)成立.读作“任意x属于M,有P(x)成立”。简记为:xM,p(x)例1 判断下列全称命题的真假:1
2、)所有的素数都是奇数;2,1 1;xR x 2)23)对每一个无理数x,x 也是无理数.1.4.2 存 在 量 词想一想?13241)2132)233),2134),23xxxRxxZ x 下列语句是命题吗?)与),)与)之间有什么关系?;能被 和 整除;存在一个使;至少有一个能被 和 整除。短语“存在一个”“至少一个”在逻辑中通常叫做存在量词用符号“”表示。含有存在量词的命题,叫做特称命题。12例如:)有一个素数不是奇数。)有的平行四边形是菱形。常见的存在量词还有“有些”“有一个”“对某个”“有的”等.M通常,将含有变量x的语句用p(x)、q(x)、r(x)表示,变量x特称命题“存在中的一个
3、x的取值范围用,使p(xM表示。)成立.读作“存在一个x属于M,使P(x)成立”。简记为:xM,p(x)2例1 判断下列特称命题的真假:1)有一个实数x,使x+2x+3=0成立;2)存在两个相交平面垂直同一条直线;3)有些整数只有两个正因数.1.4.3 含有一个量词的命题的否定想一想?1)写出下列命题的否定所有的矩形都是平行四边形;2)每一个素数都是奇数;23),210 xR xx 这些命题和它们的否定在形式上有什么变化?1)存在一个矩形不是平行四边形;2)存在一个素数不是奇数;23),210 xR xx 否定:xM,p(x)xM,p(x)xM,p(x)xM,p(x)xM,p(x)xM,p(x
4、)含有一个量词的全称命题的否定,有下面的结论 xM,p(x)全称命题:p它的否定:p xM,p(x)例1写出下列全称命题的否定:1)p:所有能被3整除的整数都是奇数;2)p:每一个四边形的四个顶点公圆;23)p:对任意xZ,x 的个位数字不等于3。从形式看,全称命题的否定是特称命题。想一想?1)写出下列命题的否定有些实数的绝对值是正数;2)某些平行四边形是菱形;23),10 xR x 这些命题和它们的否定在形式上有什么变化?否定:1)所有实数的绝对值都不是正数;2,10 xR x xM,p(x)xM,p(x)xM,p(x)xM,p(x)xM,p(x)xM,p(x)2)每一个平行四边形都不是菱形;3)含有一个量词的特称命题的否定,有下面的结论 xM,p(x)特称命题:p它的否定:p xM,p(x)从形式看,特称命题的否定都变成了全称命题.0 x 2例1 出下列特 命 的否定:1)p:R,x+2x+3;2)p:有的三角形是等边三角形;3)p:有一个素数含有三个正因子。写称题例2写出下列命题的否定,并判断真假:1)p:任意两个等边三角形都是相似的;x 22)p:R,x+2x+2=0;