1、北师大版七年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列说法错误的是()A单项式h的系数是1B多项式a-2.5的次数是1Cm+2和3都是整式D是六次单项式2、若,则
2、()ABC3D113、下列几何体中,其俯视图与主视图完全相同的是()ABCD4、有下列四个算式;其中,正确的有()A0个B1个C2个D3个5、a与2互为倒数,那么a等于()A2B2CD二、多选题(5小题,每小题4分,共计20分)1、下列说法中正确的是()A一个非零有理数与它的倒数之积为1B一个非零有理数与它的相反数之商为-1C两数商为-1,则这两个数互为相反数D两数积为1,则这两个数互为相反数2、关于多项式,下列说法正确的是()A这个多项式是五次四项式B四次项的系数是7C常数项是1D按y降幂排列为E这个多项式的最高次项为F当,时,这个多项式的值为3、小虎做了以下4道计算题,其中正确的有()A0
3、(1)=1;B;C;D(1)2015=20154、(多选)下列说法正确的是()Aa一定是负数B在数轴上离原点越远的数就越大C一个数比它的相反数大,这个数是正数D一个数的绝对值等于它本身,这个数是非负数5、将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中能剪去的是()A1B2C3D6第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、2022年4月16日,神州十三号载人飞船返回舱成功着陆,某网站关于该新闻的相关搜索结果为52800000条,将52800000用科学记数法表示为_2、多项式最高次项为_,常数项为_3、多项式
4、是关于的四次三项式,则_4、一个热气球在200米的空中停留,然后它依次上升了15米,8米,20米,这个热气球此时停留在 _米5、比小的数是_四、解答题(5小题,每小题8分,共计40分)1、阅读材料,探究规律,完成下列问题甲同学说:“我定义了一种新的运算,叫*(加乘)运算“然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:;乙同学看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了”聪明的你也明白了吗?(1)请你根据甲同学定义的*(加乘)运算的运算法则,计算下列式子:_;_;_请你尝试归纳甲同学定义的*(加乘)运算的运算法则:两数进行*(加乘)运算时,_特别地,0和任何数进行*
5、(加乘)运算, _(2)我们知道有理数的加法满足交换律和结合律,这两种运算律在甲同学定义的*(加乘)运算中还适用吗?请你任选一个运算律,判断它在*(加乘)运算中是否适用,并举例验证(举一个例子即可)2、在长方形纸片中,边长,(,),将两张边长分别为8和6的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影的面积为,图2中阴影部分的面积为(1)请用含的式子表示图1中,的长;(2)请用含,的式子表示图1,图2中的,若,请问的值为多少?3、计算:4、观察算式:;,(1)请根据你发现的规律填空:( )2;(2)用
6、含n的等式表示上面的规律: ;(n为正整数)(3)利用找到的规律解决下面的问题:计算:5、已知,试求:(1)的值;(2)的值-参考答案-一、单选题1、D【解析】【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】A、B、C说法均是正确的,D中是四次单项式【考点】本题考察单项式知识的相关应用2、D【解析】【分析】根据添括号法则,对原式变形,再代入求值,即可【详解】,当时,原式=7+4=11故选D【考点】本题主要考查代数式求值,掌握添括号法则,是解题的关键3、C【解析】【分析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分
7、析即可求解【详解】解:选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误故答案为:C【考点】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.4、C【解析】【分析】由有理数的加减运算法则、乘方的运算法则、除法运算法则,分别进行判断,即可得到答案【详解】解:;故错误;故错误;故正确;故正确;故选:C【考点】本题考查了有理数的加减乘除、乘方的运算法则,解题的关键是正确掌握运算法
8、则进行判断5、C【解析】【分析】乘积是1的两数互为倒数据此判断即可【详解】解:a与2互为倒数,那么a等于故选:C【考点】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数解题关键是掌握倒数的定义二、多选题1、ABC【解析】【分析】根据倒数和相反数的定义:如果两个数的积为1,那么这两个数互为倒数,如果两个数只有符号不同,数字相同,那么这两个数互为相反数(0的相反数是0),进行逐一判断即可【详解】解:A一个非零有理数与它的倒数之积为1,故此选项符合题意;B一个非零有理数与它的相反数之商为-1,故此选项符合题意;C两个数的商为1,这两个数互为相反数,故此选项符合题意;D两个数的积
9、为1,这两个数互为倒数,故此选项不符合题意故选ABC【考点】本题主要考查了相反数和倒数的定义,解题的关键在于能够熟练掌握相关知识进行求解2、ACD【解析】【分析】根据多项式的定义,多项式系数和次数的定义,求代数式的值,分别进行判断,即可得到答案【详解】解:根据题意,多项式,则A、这个多项式是五次四项式,故A正确;B、四次项的系数是,故B错误;C、常数项是1,故C正确;D、按y降幂排列为,故D正确;E、这个多项式的最高次项为,故E错误;F、当,时,则原式=;故F错误;说法正确的是ACD;故选:ACD【考点】本题考查了多项式的定义,多项式系数和次数的定义,解题的关键是熟记定义进行判断3、ABC【解
10、析】【分析】根据各个小题中的式子,可以计算出正确的结果,从而可以解答本题【详解】解:A、0(1)=1,计算正确,符合题意;B、,计算正确,符合题意;C、,计算正确,符合题意;D、(1)2015=1,计算错误,不符合题意;故选:ABC【考点】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法4、CD【解析】【分析】通过举反例,当时,求解 可判断A,利用绝对值的含义可判断B,D,利用相反数的含义可判断C,从而可得答案.【详解】解:当a=0时,不表示负数,故A不符合题意;在数轴上离原点越远的数绝对值就越大,故B不符合题意;一个数比它的相反数大,这个数是正数,正确,故C符合题意;
11、一个数的绝对值等于它本身,这个数是非负数,正确,故D符合题意;故选:CD【考点】本题考查的是负数的含义,绝对值的含义,相反数的含义,掌握“距离原点越远,绝对值越大;一个正数的相反数是负数,0的相反数是0,一个负数的相反数是正数”是解题的关键.5、ABD【解析】【分析】根据正方体的展开图中每个面都有唯一的一个对面进行判断,可得答案【详解】解:由图可得,3的唯一对面是5,而4的对面是2或6,7的对面是1或2,所以将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,编号为1、2、3、6的小正方形中能剪去的是1、2、6,故选:ABD【考点】本题考查了展开图折叠成几何体,利用正方体的展开
12、图中每个面都有唯一的一个对面是解题关键三、填空题1、【解析】【分析】根据科学记数法的表示形式即可求解【详解】解:,故答案为【考点】本题考查了科学记数法,熟练掌握科学记数法的表示形式是解题的关键2、 【解析】【分析】根据多项式的项数和次数的确定方法即可求出答案【详解】多项式各项分别是:,最高次项是,常数项是故答案为:,【考点】本题主要考查了多项式的有关定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项3、【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可【详解】解:多项式2x5是关于x的四次三项式,m14,解得m5,故答案为:5【考点】此
13、题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键4、187【解析】【分析】根据题意列出算式,再根据有理数的加减混合运算计算即可【详解】解:200+15820187(米),即这个热气球此时停留在187米故答案为:187【考点】本题考查了有理数的混合运算,根据题意正确列出算式是解答本题的关键5、【解析】【分析】利用“比小的数表示为”,列式计算可得答案.【详解】解:比小的数是: 故答案为:【考点】本题考查的是有理数的减法的应用,掌握有理数的减法法则与应用是解题的关键.四、解答题1、 (1) 同号得正,异号得负,并把绝对值相加 等于这个数的绝对值(2)加乘运算满足交换律,不满足结合律,举
14、例见解析.【解析】【分析】(1)根据题干提供的运算特例的运算特点分别进行计算,再归纳可得:加乘运算的运算法则;(2)对于加乘运算的交换律, 可举例进行运算后再判断,对于加乘运算的结合律,可举例 进行运算后再判断即可.(1)解:根据加乘运算的运算法则可得:;归纳可得:两数进行*(加乘)运算时,同号得正,异号得负,并把绝对值相加特别地,0和任何数进行*(加乘)运算,等于这个数的绝对值(2)解:加法的交换律仍然适用, 例如:所以故加法的交换律仍然适用 加法的结合律不适用, 例如: 所以故加法的结合律不适用【考点】本题考查的是新定义运算,同时考查的是有理数的加法运算,绝对值的含义,理解新定义,归纳总结
15、运算法则是解本题的关键.2、(1);(2)【解析】【分析】(1)根据图形中线段的数量关系可直接进行求解;(2)利用图形面积关系分别表示出,再利用整式的混合运算计算即可【详解】解:(1)由图形可得:,;(2)由图形可得:,若,则有:【考点】本题主要考查整式的加减运算,利用图形正确列出整式是解题的关键3、3【解析】【分析】根据有理数混合运算的顺序计算即可【详解】解:=-1+4=3【考点】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有
16、时也可以根据运算定律改变运算的顺序4、(1)7;(2)n(n+2)+1=(n+1)2;(3)【解析】【分析】(1)利用有理数的混合运算求解;(2)利用题中的等式得到n(n+2)+1=(n+1)2(n为正整数);(3)先通分得到原式=,再利用(2)中的结论得到原式=,然后约分即可【详解】解:(1)68+1=72;故答案为:7;(2)n(n+2)+1=(n+1)2(n为正整数);故答案为:n(n+2)+1=(n+1)2;(3)原式=【考点】本题考查了规律型:数字的变化类,根据已知得出数字中的变与不变是解题关键5、(1)1;(2)5【解析】【分析】(1)由非负数的性质可求得a、b的值,然后将a、b的值代入即可;(2)由非负数的性质可求得a、b的值,然后分别求得a、b的绝对值,最后带入计算即可【详解】解:(1),;(2),【考点】本题主要考查的是求代数式的值、求一个数绝对值、非负数的性质,几个非负数的和为0,这几数都为0