1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末综合训练试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD2、
2、将一副直角三角板ABC和EDF如图放置(其中A=60,F=45),使点E落在AC边上,且ED/BC,则AEF的度数为()A145B155C165D1703、如图,在中,则()ABCD4、如图,在中,H是高MQ和NR的交点,且MQ=NQ,已知PQ5,NQ9,则MH的长为()A3B4C5D65、点 A (2,-1)关于 y 轴对称的点 B 的坐标为()A(2, 1)B(-2,1)C(2,-1)D(-2,- 1)二、多选题(5小题,每小题4分,共计20分)1、如图所示的标志中,是轴对称图形的有()ABCD2、下列运算结果正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCx3x2x5D
3、x2x22x23、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形4、下列平面图形中,是轴对称图形的是()ABCD5、下列各式中,计算错误的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在三角形的三条高中,位于三角形外的可能条数是_条2、如图,若,则_3、若a+b4,ab1,则(a+2)2(b2)2的值为_4、计算:的结果是_.5、若,则_四、解答题(5小题,每小题8分,共计40分)1、现有一装修工程,若甲、乙两队装修队合作,需要12天完
4、成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?2、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数3、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格
5、,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分) 线 封 密 内 号学级年名姓 线 封 密 外 请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)4、如图,在ABC中,ABAC,D,E是BC边上的点,连接AD,AE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD(1)求证:ABDACD(2)若BAC100,求DAE的度数5、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+
6、(2a2)3(5)(9)3()3()3-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键2、C【解析】【分析】根据直角三角形两锐角互余求出1,再根据两直线平行,内错角相等求出2,然后根据CEF=DEF -2计算出CEF,即可求出AEF【详解】解:A=60,F=45,1=90-60=30,DEF=90-45=45,EDBC,2=1=30,CEF=DEF-2=45-30=15
7、, 线 封 密 内 号学级年名姓 线 封 密 外 AEF=180-15=165.故选C.【考点】本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键3、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到BCD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.4、B【解析】【分析】先证明,再由全等三角形的性质可得PQ=QH=5,根据MQ=NQ=9,即可得到答案【详解】解:MQPN,NRPM,NQHNRPHRM90,RHMQ
8、HN,PMHHNQ,在和中,(ASA),PQQH5,NQMQ9,MHMQHQ954,故选:B【考点】本题考查全等三角形的判定和性质,解题的关键是推理证明三角形的全等三角形,找到边与边的关系解决问题5、D【解析】【分析】根据点坐标关于轴对称的变换规律即可得 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:点坐标关于轴对称的变换规律:横坐标互为相反数,纵坐标相同则点关于轴对称的点的坐标为,故选:D【考点】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键二、多选题1、ACD【解析】【分析】依据轴对称图形的定义解答,即:一个图形沿一条直线对折,对折后的两部分都能完全
9、重合,则这个图形关于这条直线对称,这条直线就是这个图形的对称轴【详解】解:根据轴对称图形的意义可知:选项A、C、D都是轴对称图形,而B不是轴对称图形;故选:ACD【考点】本题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合2、CD【解析】【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别化简得出答案【详解】解:A、,故该选项计算错误,不符合题意;B、,故该选项计算错误,不符合题意;C、,故该选项计算正确,符合题意;D、x2+x2=2 x2,故该选项计算正确,符合题意;故选CD【考点】此题主要考查了积的乘方运算以及同底数幂的乘除
10、运算、合并同类项,正确掌握运算法则是解题关键3、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑4、ACD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据轴对称图形的定义:一个图形延一条直线对着,直线两旁的部分能够完全重合,那么这个图形叫轴对称
11、图形,逐个判断即可【详解】解:A是轴对称图形,故本选项符合题意;B不是轴对称图形,故本选项不符合题意;C是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项符合题意;故选:ACD【考点】本题考查了轴对称图形的定义,熟悉相关定义是解题的关键5、ACD【解析】【分析】根据合并同类项,积的乘方,同底数幂的乘除法,逐项分析即可【详解】A. 与不是同类项,不能合并,故该选项不正确,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项不正确,符合题意;D. ,故该选项不正确,符合题意故选ACD【考点】本题考查了合并同类项,积的乘方,同底数幂的乘除法,掌握以上知识是解题的关键三、填空题1、0或2
12、【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外【详解】解:当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握2、100【解析】【分析】先根据EC=EACAE=40得出C=40,再由三角形外角的性质得出AED的度数,利用平行线的性质即可得出结论【详解】EC=EA,CAE=40,C
13、=CAE=40,DEA是ACE的外角,AED=C+CAE=40+40=80,ABCD, 线 封 密 内 号学级年名姓 线 封 密 外 BAE+AED=180BAE =100【考点】本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键3、20【解析】【分析】先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可【详解】将代入得:原式故答案为:20【考点】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握4、【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】=(5-
14、4)2018=+2,故答案为+2.【考点】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.5、0【解析】【分析】先求出,再求的平方,然后再开方即可求出【详解】解:, 线 封 密 内 号学级年名姓 线 封 密 外 ,故答案为:0【考点】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键四、解答题1、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独完成此项工程需要多少个月而后算出乙单独完成需要的时间;(2)两个关系式:甲乙两个工程队需完成整个工
15、程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为2,答:乙队最多调走2人【考点】本题考查了分式方程的应用以及不等式解法与应用,利用总工作量为1得出
16、等式方程是解决问题的关键2、 (1)证明见解析;(2)【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出3、见解析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【考点】本题主要考查利用旋
17、转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念4、(1)见解析;(2)【解析】【分析】(1)由对称得到,再证明 即可;(2)由全等三角形的性质,得到,BAC=100,最后根据对称图形的性质解题即可【详解】解:(1)以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,在ABD与中, 线 封 密 内 号学级年名姓 线 封 密 外 (2) ,BAC=100,以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,DAE【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键5、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a
18、6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法