1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则
2、的取值范围是()ABCD2、下列方程中,一定是关于x的一元二次方程的是()ABCD3、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)4、如图,在中,为的直径,和相切于点E,和相交于点F,已知,则的长为()ABCD25、若实数满足,则的值是( )A1B-3或1C-3D-1或3二、多选题(5小题,每小题4分,共计20分)1、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是()ABCD2、下列说法正确的是()A圆是轴对称图形,它有无数条对称轴B圆的半径、弦
3、长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C弦长相等,则弦所对的弦心距也相等D垂直于弦的直径平分这条弦,并且平分弦所对的弧3、如图,如果AB为O的直径,弦CDAE,垂足为E,那么下列结论中,正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 AB弧BC弧BDCBAC=BADDACAD4、已知抛物线(,是常数,)经过点,当时,与其对应的函数值下列结论正确的是()ABCD关于的方程有两个不等的实数根5、下列关于圆的叙述正确的有( )A对角互补的四边形是圆内接四边形B圆的切线垂直于圆的半径C正多边形中心角的度数等于这个正多边形一个外角的度数D过圆外一点所画的圆
4、的两条切线长相等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、关于的一元二次方程的一个根是2,则另一个根是_2、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_3、北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为_元时,该种植户一天的销售收入最大4、对任意实数a,b,定义一种运算:,若,则x的值为_5、已知抛物线与x轴的
5、一个交点为,则代数式的值为_四、解答题(5小题,每小题8分,共计40分)1、如图1,在等腰直角三角形中,点,分别为,的中点,为线段上一动点(不与点,重合),将线段绕点逆时针方向旋转得到,连接,(1)证明:;(2)如图2,连接,交于点证明:在点的运动过程中,总有;若,当的长度为多少时,为等腰三角形?2、用配方法解方程:3、在平面直角坐标系中,抛物线的对称轴为 线 封 密 内 号学级年名姓 线 封 密 外 求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围4、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.5、某商店如
6、果将进价8元的商品按每件10元出售,那么每天可销售200件,现采用提高售价,减少进货量的方法增加利润,如果这种商品的售价每涨1元,那么每天的进货量就会减少20件,要想每天获得640元的利润,则每件商品的售价定为多少元最为合适?-参考答案-一、单选题1、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点
7、问题,借助数形结合解题是关键2、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得【详解】解:A、, 当时,不是一元二次方程,故不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键3、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得
8、,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标4、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、
9、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式5、A 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】设x2-3x=y将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y将y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3当y=1时,x2-3x=1,=b2-4ac=(-3)2-41(-1)=9+4=130,有两个不相等的实数根,当y=-3时,x2-3x=-3,=b2-4ac=(-3)2-413=9=120,无解故y=1,即x2-3x=1故选A【考点】本题考查
10、了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.二、多选题1、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故
11、本选项符合题意;C、=b2-4ac=12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1)=80,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【考点】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根2、ABD【解析】【分析】根据圆的相关知识和垂径定理进行分析即可【详解】解:A. 圆是轴对称图形,它有无数条对称轴,正确;B. 圆的半径、弦长的一半、弦上的弦心距
12、能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C. 弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D. 垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确 线 封 密 内 号学级年名姓 线 封 密 外 故选:ABD【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题3、ABC【解析】【分析】根据垂径定理逐个判断即可【详解】解:AB为O的直径,弦CDAB垂足为E,则AB是垂直于弦CD的直径,就满足垂径定理,因而CE=DE,弧BC=弧BD,BAC=BAD都是正确的根据条件可以得到AB是CD的垂直平分线,因而AC=AD所以D
13、是错误的故选:ABC【考点】本题主要考查的是对垂径定理的记忆与理解,做题的关键是掌握垂径定理的应用4、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】抛物线(是常数,)经过点(-1,-1),当时,与其对应的函数值,c=10,a-b+c= -1,4a-2b+c1,a-b= -2,2a-b0,2a-a-20,a20,b=a+20,abc0,故A错误;b=a+2,a2,c=1,故B正确;a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,即,故C正确;,=0,有两个不等的实数根,故D正确故选:BCD【考点】本题考查了二次函数的
14、性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键5、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确 线 封 密 内 号学级年名姓 线 封 密 外 【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D. 过圆外一点引的圆的两条切线,则切
15、线长相等,D选项正确故选:ACD【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念三、填空题1、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根【详解】解:由题意把x=2代入一元二次方程得:,解得:,原方程为,解方程得:,方程的另一个根为-3;故答案为-3【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键2、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,
16、OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键3、25【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】设草莓的零售价为x元/千克,销售收入为y元,由题意得y=30x2+1500x11880,再根据二次函数的性质解答即可【详解】解:设草莓的零售价为x元/千克,销售收入为y元,由题意得,y=x30030(x22)+1830(x22)=30x2+1500x11880,当时,y最大,当草莓的零售价为25元/千克时,种植户一天的销售收入最大故答案为:25【考点】本题考查二次
17、函数的实际应用,熟练掌握二次函数的性质是解题关键4、2或-3#-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可【详解】解:,解得或,故答案为:2或-3【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键5、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入
18、函数解析式得到有关m的代数式的值四、解答题1、(1)见详解;(2)见详解;当的长度为2或时,为等腰三角形【解析】【分析】(1)由旋转的性质得AH=AG,HAG=90,从而得BAH=CAG,进而即可得到结论;(2)由,得AH=AG,再证明,进而即可得到结论;为等腰三角形,分3种情况:(a)当QAG=QGA=45时,(b)当GAQ=GQA=67.5时,(c)当 线 封 密 内 号学级年名姓 线 封 密 外 AQG=AGQ=45时,分别画出图形求解,即可【详解】解:(1)线段绕点A逆时针方向旋转得到,AH=AG,HAG=90,在等腰直角三角形中,AB=AC,BAH=90-CAH=CAG,;(2)在等
19、腰直角三角形中,AB=AC,点,分别为,的中点,AE=AF,是等腰直角三角形,AH=AG,BAH =CAG,AEH=AFG=45,HFG=AFG+AFE=45+45=90,即:;,点,分别为,的中点,AE=AF=2,AGH=45,为等腰三角形,分3种情况:(a)当QAG=QGA=45时,如图,则HAF=90-45=45,AH平分EAF,点H是EF的中点,EH=;(b)当GAQ=GQA=(180-45)2=67.5时,如图,则EAH=GAQ=67.5,EHA=180-45-67.5=67.5,EHA=EAH,EH=EA=2;(c)当AQG=AGQ=45时,点H与点F重合,不符合题意,舍去,综上所
20、述:当的长度为2或时,为等腰三角形 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键2、x1+3,x23【解析】【分析】根据配方法,两边配上一次项系数一半的平方即可得到,然后利用直接开平方法求解【详解】解:x2-2x4,x2-2x+54+5,即(x-)29,x-3,x1+3,x23【考点】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是解题关键3、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛
21、物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1时,y0,即-1+2+m0,然后解两个不等式求出它们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为【考点
22、】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点 线 封 密 内 号学级年名姓 线 封 密 外 坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换4、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(
23、2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程5、每件商品的售价定为16元最为合适【解析】【分析】设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,利用每天销售这种商品的利润=每件的销售利润日销售量(日进货量),即可得出关于x的一元二次方程,解之即可得出x的值,再结合“现采用提高售价,减少进货量的方法增加利润”,即可得出每件商品的售价定为16元最为合适【详解】解:设每件商品的售价定为x元,则每件商品的销售利润为(x-8)元,每天的进货量为200-20(x-10)=(400-20x)件,依题意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16又现采用提高售价,减少进货量的方法增加利润,x=16答:每件商品的售价定为16元最为合适【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键