收藏 分享(赏)

2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx

上传人:a**** 文档编号:709276 上传时间:2025-12-13 格式:DOCX 页数:22 大小:484.73KB
下载 相关 举报
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第1页
第1页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第2页
第2页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第3页
第3页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第4页
第4页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第5页
第5页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第6页
第6页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第7页
第7页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第8页
第8页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第9页
第9页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第10页
第10页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第11页
第11页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第12页
第12页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第13页
第13页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第14页
第14页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第15页
第15页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第16页
第16页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第17页
第17页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第18页
第18页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第19页
第19页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第20页
第20页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第21页
第21页 / 共22页
2022年综合复习人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(含答案详解).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨

2、径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD2、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关3、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于

3、0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则4、已知二次函数的图象经过点,且,则下结论正确的是()ABCD5、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16D12或16二、多选题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)的大致图象如图所示(1x=h2,0xA1)下列结论中正确的是()A2a+b0Babc0C若OC=2OA,则2bac=4D3ac0 线 封 密 内 号学级年名姓 线 封 密 外 2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四

4、个结论正确的有()AA、B关于x轴对称;BA、B关于y轴对称;CA、B关于原点对称;D若A、B之间的距离为43、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( )Ab24ac0B4a2b+c0C2cb=3Da+3=c4、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的是()ABCD5、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2

5、=x29第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数,当x_时,y取得最小值2、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_3、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)4、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_5、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈

6、的边长AB为多少米?设AB=x米,根据题意可列出方程的为_四、解答题(5小题,每小题8分,共计40分)1、红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万 线 封 密 内 号学级年名姓 线 封 密 外 件;月销售单价每涨价1元,月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当

7、月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值2、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、用配方法解方程:4、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润5、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售

8、单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?-参考答案-一、单选题1、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y=ax2,点B(45,-78)

9、,-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.2、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值, 线 封 密 内 号学级年名姓 线 封 密 外 当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考

10、点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键3、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键4、D【解析】【分析】根据二次函数解析式,画出大致函数图象,结合条件画出A、B、C的大致位置,进而即可判断各个选项【详解】解

11、:由二次函数y=a(x+)2+(a0)可知:函数图象是一个开口向上的抛物线,且对称轴为直线,y3y1y2,点C离对称轴最远,点B离对称轴最近,|x1-x2|=|x2-x3|,x3x2x1,A、B、C的大致位置,如图所示,x2,x2,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数的图象和性质,根据条件,画出函数的大致图象以及图象上的点的位置是解题的关键5、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰

12、三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键二、多选题1、ACD【解析】【分析】根据二次函数的图象和性质进行分析即可注意抛物线的开口方向以及对称轴的位置【详解】解:抛物线开口向下,抛物线的对称轴,2a+b0,故A正确;抛物线与y轴的交点在y轴的负半轴,abc0,故B错误;若OC=2OA,则A ,2bac=4,故C正确;抛物线的对称轴,当时,即,故D正确故选:ACD【点睛

13、】本题考查了二次函数的图象与系数之间的关系,熟练运用抛物线的对称轴是解题的关键2、BD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为 ,故D正确故选BD【点睛】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键3、ABC【解析】【分析】根据抛物线的

14、图象与性质即可判断【详解】抛物线与x轴有两个交点,0,b2-4ac0,故A选项错误;x=-2时,y0,x=-2时,y=4a-2b+c0,故B选项错误;顶点为(-1,3),y=a-b+c=3,把代入得,化简得,故C选项错误;把代入得,化简得,故D选项正确;不正确的是ABC;故选:ABC【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型4、CD【解析】【分析】根据表格可知直线x1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断,根据与x轴交点坐标结合开口方向可判断【详解】解:从表格可以看出,函数的对称轴是直线x1,顶点坐标为(1

15、,1),此时有最小值函数与x轴的交点为(0,0)、(2,0),抛物线yax2+bx+c的开口向上故错误;抛物线yax2+bx+c的对称轴为直线x1 线 封 密 内 号学级年名姓 线 封 密 外 故错误;方程ax2+bx+c0的根为0和2故正确;当y0时,x的取值范围是x0或x2故正确;故选CD【点睛】本题考查了二次函数的图象和性质解题的关键在于根据表格获取正确的信息5、AC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.

16、(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【点睛】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程三、填空题1、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,

17、第二种是配方法,第三种是公式法2、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 3、【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断

18、【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1,即,故正确;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质4、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查

19、解一元二次方程,解题的关键是熟知因式分解法的运用5、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程. 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题1、(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4【解析】【分析】(1)分和两种情况,根据“月销售单价每涨

20、价1元,月销售量就减少万件”即可得函数关系式,再根据求出的取值范围;(2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得【详解】解:(1)由题意,当时,当时,解得,综上,;(2)设该产品的月销售利润为万元,当时,由一次函数的性质可知,在内,随的增大而增大,则当时,取得最大值,最大值为;当时,由二次函数的性质可知,当时,取得最大值,最大值为90,

21、因为,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元),设该产品捐款当月的月销售利润为万元,由题意得:,整理得:,在内,随的增大而增大,则当时,取得最大值,最大值为,因此有,解得【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方

22、程,解 线 封 密 内 号学级年名姓 线 封 密 外 之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程3、x1+3,x23【解析】【分析】根据配方法,两边配

23、上一次项系数一半的平方即可得到,然后利用直接开平方法求解【详解】解:x2-2x4,x2-2x+54+5,即(x-)29,x-3,x1+3,x23【点睛】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的方法与步骤是解题关键4、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润 , 线 封 密 内 号学级年名姓 线 封 密 外 当时,P有

24、最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值5、 (1)y10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为ykx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润每个遮阳伞的利润销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解:设一次函数关系式为ykx+b,由题意可得:,解得:,函数关系式为y10x+540;(2)解:由题意可得:w(x20)y(x20)(10x+540)10(x37)2+2890,100,二次函数开口向下,当x37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【点睛】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1