1、京改版八年级数学上册期中考模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算下列各式,值最小的是()ABCD2、计算的结果是()ABC1D3、下列二次根式中,最简二次根式是()ABCD4、
2、化简的结果为()ABCD5、运算后结果正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、关于x的分式方程解的情况,下列说法正确的是()A若,则此方程无解B若,则此方程无解C若方程的解为负数,则D若,则方程的解为正数2、下列说法正确的是()ABC2的平方根是D3、下列实数中的无理数是()ABCD4、根据分式的基本性质,分式可变形为()ABCD5、下列实数中无理数有()AB0CDEFGH0.020020002第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,
3、现将 “数对”放入其中后,得到的数是_2、计算=_3、若,则的值等于_4、的算术平方根是_,的倒数是_5、当时,代数式的值是_四、解答题(5小题,每小题8分,共计40分)1、已知,求的值2、先化简,再求值:,且x为满足3x2的整数3、如果一个正数m的两个平方根分别是2a3和a9,求2m2的值4、(1)因式分解:;(2)解方程:5、若和互为相反数,求的值-参考答案-一、单选题1、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.; B.;C.; D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键.
4、2、C【解析】【分析】根据同分母分式的加法法则,即可求解【详解】解:原式=,故选C【考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键3、A【解析】【分析】根据最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式,可得答案【详解】解:A. ,是最简二次根式,故正确;B. ,不是最简二次根式,故错误;C. ,不是最简二次根式,故错误;D. ,不是最简二次根式,故错误.故选A.【考点】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式4、B【解析】【分析】根据同分母的分式减法法则进行化简即可得到结果【详解】解
5、:,故选:【考点】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键5、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C【考点】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键二、多选题1、BC【解析】【分析】先按照一般步骤解方程,用含有a的代数式表示x,然后根据x的取值讨论a的范围,即可作出判断【详解】解:A、当a=0时,原分式方程为,解得:x=2,当x=2时,x-10,原分式方程的解为x=2,故本选项错误,不符合题意;B、,去分母得:,当a=1时,该方程无解,原分式方程无解;当a=-1时,原分式
6、方程为,解得:x=1,当x=1时,x-1=0,x=1是增根,原分式方程无解;若,则此方程无解,故本选项正确,符合题意;C、,去分母得:,解得:,方程的解为负数,x0且x-10,且,解得:,故本选项正确,符合题意;D、若方程的解为正数,且,解得:且a-1,当且a-1时,方程的解为正数,故本选项错误,不符合题意;故选:BC【考点】考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解2、ABC【解析】【分析】直接根据立方根、二次根式的性质以及乘法运算法则进行判断即可【详解】解:A. ,故选项A正确,符合题意;B. ,故选项B正确,符合题意;C. 2的平方根是,故选项
7、C正确,符合题意;D. ,故选项D错误,不符合题意;故选:ABC【考点】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0同时还考查了二次根式的性质3、BC【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项【详解】解:A,是有理数,不符合题意;B、,是无理数,符合题意;C、,是无理数,符合题意;D、,是有理数,不符合题意;故选BC
8、【考点】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数4、AD【解析】【分析】根据分式的基本性质即可求出答案【详解】原式=,故选AD【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型5、EGH【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可求解【详解】解:,0,是有理数;,0.020020002,是无理数,故选:EGH【考点】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键三、填空题1、12【解析】【分析】根据题中“数对”的新定义,求出所求即可【详解】解:根据题中的新
9、定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键2、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点】本题考查了分式的除法,熟练掌握运算法则是解本题的关键3、【解析】【分析】先把分式进行化简,再代入求值【详解】=当a=时,原式=故答案为【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键4、 3 【解析】【分析】先计算的值,再根据算术平方根得定义求解;根据倒数的定义求解即可【详解】解:,9的算术平方根是3,的算术平方根是3;
10、的倒数是;故答案是:3,【考点】本题考查了算术平方根和倒数的应用,主要考查学生的理解能力和计算能力5、【解析】【分析】先根据分式的加减乘除运算法则化简,然后再代入x求值即可【详解】解:由题意可知:原式,当时,原式,故答案为:【考点】本题考查了分式的加减乘除混合运算,属于基础题,运算过程中细心即可求解四、解答题1、2022【解析】【分析】根据算术平方根的非负性确定的范围,进而化简绝对值,在根据平方根的定义求得代数式的值【详解】解:,原式化简为,故【考点】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定的范围化简绝对值是解题的关键2、2x3,-5【解析】【分析】根
11、据分式的运算法则即可求出答案【详解】原式=+=(+)x=x1+x2=2x3由于x为满足3x2的整数,x0且x1且x2,所以x=1,原式=23=5【考点】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型3、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.4、(1);(2)x=4【解析】【分析】(1)先提取公因式,再利用完全平方公式进行分解因式,即可;(2)通过去分母,合并同类项移项,未知数系数化为1,检验,即可求解【详解】解:(1)原式=;(2),去分母得:,即:,解得:x=4,经检验:x=4是方程的解【考点】本题主要考查分解因式,解分式方程,掌握提取公因式和完全平方公式以及取去分母,是解题的关键5、【解析】【分析】根据两个数的立方根互为相反数得出:2a1=3b1,推出2a=3b,即可得出答案【详解】和互为相反数,+0,2a1+13b0,2a13b1, 2a3b,=【考点】本题考查了立方根和相反数的概念,关键是由两个数的立方根互为相反数得出两个数互为相反数