1、京改版八年级数学上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果是( )ABCD2、的结果是()ABCD3、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限
2、B第二象限C第三象限D第四象限4、已知、为实数,且+44b,则的值是()ABC2D25、已知 ,则 的值是()ABC2D-2二、多选题(5小题,每小题4分,共计20分)1、下列说法错误的是()A1的平方根是1B1的立方根是1C是3的平方根D3是的平方根2、在下列各式中不正确的是()A=2B=3C=8D=23、下列二次根式中,化简后能与合并的是()ABCD4、如果方程有增根,则它的增根可能为()Ax=1Bx=-1Cx=0Dx=35、下列运算不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算610的结果是_2、若,则_3、计算:=_;=_.4、当时,
3、代数式的值是_5、观察下列各式:,请利用你所发现的规律,计算+,其结果为_四、解答题(5小题,每小题8分,共计40分)1、若分式有意义,求x的取值范围.2、若和互为相反数,求的值3、计算:(1)(2)4、求下列各式中的x(1)x257;(2)(x+1)36405、 “说不完的”探究活动,根据各探究小组的汇报,完成下列问题(1)到底有多大?下面是小欣探索的近似值的过程,请补充完整:我们知道面积是2的正方形边长是,且设,画出如下示意图由面积公式,可得_因为值很小,所以更小,略去,得方程_,解得_(保留到0.001),即_(2)怎样画出?请一起参与小敏探索画过程现有2个边长为1的正方形,排列形式如图
4、(1),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小敏同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形说明:直接画出图形,不要求写分析过程-参考答案-一、单选题1、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式
5、的加减运算法则,比较基础2、B【解析】【分析】首先把每一项因式分解,然后根据分式的混合运算法则求解即可【详解】=故选:B【考点】此题考查了分式的混合运算,解题的关键是先对每一项因式分解,然后再根据分式的混合运算法则求解3、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数4、C【解析】【分析】已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值【详解】已知
6、等式整理得:0,a,b2,即ab1,则原式2,故选:C【考点】本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键5、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键二、多选题1、AD【解析】【分析】根据平方根和立方根的定义即可求解【详解】解:A、1的平方根是1和-1,故A错误,符合题意;B、1的立方根是1,故B正确,不符合题意;C、是3的平方根,故C正确,不符合题意;D、因为,所以的平方根是 ,故D错误,符合题意故选
7、:AD【考点】本题主要考查了平方根和立方根的定义,熟练掌握平方根和立方根的定义是解题的关键2、ABC【解析】【分析】根据算术平方根和平方根的定义逐一判断即可【详解】解:A ,故本选项符合题意;B ,故本选项符合题意;C ,故本选项符合题意;D ,故本选项不符合题意故选ABC【考点】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根和平方根的定义是解决此题的关键3、BD【解析】【分析】根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答【详解】解:A、,不能与合并,故本选项不符合题意;B、,能与合并,故本选项符合题意;C、,不能与合并,故本选项不符合题意;D、
8、,能与合并,故本选项符合题意;故选:BD【考点】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式4、AB【解析】【分析】根据分式方程的增根的定义即可得解【详解】解:由题意可得:方程的最简公分母为(x1)(x1),若原分式方程要有增根,则(x1)(x1)0,则x1或x1,故选:AB【考点】本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值5、ABD【解析】【分析】根据二次根式的性质以及二次根式的运算法则化简和计算可得结果【详解】解:A、,运算不正确,符合题意;B、,运算不正确,符合题意;C、,运算正确,不符合题意;
9、D、,运算错误,符合题意;故选:ABD【考点】本题考查了二次根式的性质以及二次根式的运算,熟练运用运算法则是解本题的关键三、填空题1、【解析】【分析】首先化简,然后再合并同类二次根式即可【详解】解:原式=6-10=6-2=4,故答案为4【考点】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变2、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时
10、,的情况存在,综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况3、 3【解析】【分析】能化简的先化简二次根式,再进行二次根式的乘除运算.【详解】解:(1)=;(2)=3.故答案为(1). (2). 3【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键4、【解析】【分析】先根据分式的加减乘除运算法则化简,然后再代入x求值即可【详解】解:由题意可知:原式,当时,原式,故答案为:【考点】本题考查了分式的加减乘除混合运算,属于基础题,运算过程中细心即可求解5、【解析】【分析】直接根据已知数据变化规律
11、进而将原式变形求出答案【详解】由题意可得:+=+1+1+1+=9+(1+)=9+=故答案为【考点】:此题主要考查了数字变化规律,正确将原式变形是解题关键四、解答题1、【解析】【分析】先把除法化为乘法,再根据分式有意义的条件即可得到结果【详解】,x+20且x+40且x+30,解得:x2、3、4【考点】本题主要考查了分式有意义的条件,关键是注意分式所有的分母部分均不能为0,分式才有意义2、【解析】【分析】根据两个数的立方根互为相反数得出:2a1=3b1,推出2a=3b,即可得出答案【详解】和互为相反数,+0,2a1+13b0,2a13b1, 2a3b,=【考点】本题考查了立方根和相反数的概念,关键
12、是由两个数的立方根互为相反数得出两个数互为相反数3、(1)-4y2;(2)x-2【解析】(1)按照整式的加减乘除运算法则,先去括号,再合并同类项(2) 按照分式的加减乘除法则,先算括号里面的,括号里面先通分,再加减,再化除为乘,能约分的要约分【详解】解:(1)原式=,=,=;(2)原式=x-2【考点】本题考查了整式的加减乘除运算,以及分式的加减乘除混合运算,解题的关键是熟练掌握整式,分式的加减乘除运算法则4、(1),;(2)【解析】【分析】(1)移项整理后,利用平方根的性质开方求解,并化简即可;(2)移项整理后,利用立方根的性质开方求解即可【详解】解:(1),;(2),【考点】本题考查解利用平方根和立方根的性质解方程,掌握平方根与立方根的基本性质,熟练利用整体思想是解题关键5、 (1),;(2)见解析【解析】【分析】(1)根据图形中大正方形的面积列方程即可;(2)在网格中分别找到11和12的长方形,依次连接顶点即可(1)由面积公式,可得值很小,所以更小,略去,得方程,解得(保留到0.001),即故答案为:,;(2)小敏同学的做法,如图:排列形式如图(3),如图:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形,如图所示【考点】本题考查了估算无理数的大小,考查数形结合的思想,根据正方形的面积求出带根号的边长是解题的关键