1、京改版八年级数学上册期中定向攻克试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知m=,则以下对m的估算正确的()A2m3B3m4C4m5D5m62、运算后结果正确的是()ABCD3、如图,在
2、数轴上表示实数的点可能()A点PB点QC点MD点N4、当x2时,分式的值是()A15B3C3D155、计算下列各式,值最小的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列二次根式中,最简二次根式是()ABCD2、下列根式中,能再化简的二次根式是()ABCD3、如果,那么下列各式中正确的是()ABCD4、下列各数中的无理数是()ABCD5、下列二次根式中,不属于最简二次根式的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若关于x的分式方程1无解,则m_2、若方程的解与方程的解相同,则_3、 _, _4、若,则x=_.5、如图所示,直径为
3、个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是_四、解答题(5小题,每小题8分,共计40分)1、计算:2、已知,求实数a,b的平方和的倒数3、计算:(1)(3)2(3)0 (2)(2a)3b3(6a3b2)4、计算:(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()35、现有一块长为、宽为的木板,能否在这块木板上截出两个面积是和的正方形木板?-参考答案-一、单选题1、B【解析】【分析】直接化简二次根式,得出的取值范围,进而得出答案【详解】m=2+,12,3m4,故选B【考点
4、】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键2、C【解析】【分析】根据实数的运算法则即可求解;【详解】解:A.,故错误;B.,故错误;C.,故正确;D.,故错误;故选:C【考点】本题主要考查实数的计算,掌握实数计算的相关法则是解题的关键3、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解4、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到分式中进行正确的计算即可得到答案.【详解】解:把
5、代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.5、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.; B.;C.; D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键.二、多选题1、CD【解析】【分析】根据最简二次根式的定义:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式,那么,这个根式叫做最简二次根式,据此判断即可【详解】解:A、,不是最简二次根式,不符合题意;B、不是最简二次根式,不符合题意;C
6、、是最简二次根式,符合题意;D、是最简二次根式,符合题意;故选:CD【考点】本题考查了最简二次根式,熟知最简二次根式的定义是解本题的关键2、BCD【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】解:A、该二次根式符合最简二次根式的定义,故本选项不符合题意;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项符合题意;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项符合题意;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根
7、式,故本选项符合题意;故选BCD【考点】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式3、BC【解析】【分析】先判断a,b的符号,然后根据二次根式的性质逐项分析即可【详解】解:,a0,b0)4、BD【解析】【分析】根据无理数的概念,逐一判断选项即可【详解】A. 是分数,是有理数,不符合题意;B. 是无理数,符合题意;C. 是有限小数,是有理数,不符合题意;D. 是无理数,符合题意故选BD【考点】本题主要考查无理数的概念,掌握“无限不循环小数,是无理数”,是解题的关键5、ABC【解析】【分析】根据最
8、简二次根式的定义进行逐一判断即可【详解】解:A、=,不是最简二次根式,故A选项符合题意;B、=,不是最简二次根式,故B选项符合题意;C、,不是最简二次根式,故C选项符合题意;D、不能化简,是最简二次根式,故D选项不符合题意;故选ABC【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式,掌握最简二次根式的定义是解题的关键三、填空题1、2【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程有增根时无解求m的值【详解】解:1,方程两边同时乘以x1,得2x(x1)m,去括号,得2xx1m,移项、合并同类项,得xm
9、1,方程无解,x1,m11,m2,故答案为2【考点】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.2、【解析】【分析】求出第二个分式方程的解,代入第一个方程中计算即可求出a的值【详解】解:方程去分母得:3x6,解得:x2,经检验x2是分式方程的解,根据题意将x2代入第一个方程得:解得:,经检验是原分式方程的解,则故答案为:【考点】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值3、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:
10、-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键4、-1【解析】【分析】根据立方根的定义可得x-1的值,继而可求得答案.【详解】,x-1=,即x-1=-2,x=-1,故答案为-1.【考点】本题考查了立方根的定义,熟练掌握是解题的关键.5、-【解析】【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案【详解】由题意可得:圆的周长为,直径为单位1的硬币从原点处沿着数轴负半轴无滑动的逆时针滚动一周到达A点,A点表示的数是:-故答案为:-【考点】此题考查了数轴的特点及圆的周长公式,正确得出圆的周长是解题的关键四、解答题1、【解析】【分析】分别根据绝对值的代数意
11、义、二次根式的乘法、分母有理化以及负整数指数幂的运算法则对各项进行化简,然后再进行加减运算即可【详解】解:=【考点】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键2、【解析】【分析】根据非负数的性质和分式的性质,可得a2-16=0,,a4,求出a,b,然后再求a,b的平方和的倒数即可.【详解】解:根据题意得:a2-16=0,a4,所以 a4,b8 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.3、(1)10;(2)b【解析】【分析】(1)直接利用零指数幂的性质化简得出答案;(2)直接利用积的乘方运算法则化简,再利用单项式除单项式运算法则计
12、算得出答案【详解】解:(1)(-3)2+(+3)0=9+1=10;(2)(-2a)3b3(6a3b2)=-8a3b36a3b2=b【考点】此题主要考查了零指数幂的性质以及积的乘方运算、单项式除单项式运算,正确掌握相关运算法则是解题关键4、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(
13、m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法5、能截出两个面积是和的正方形木板.【解析】【分析】根据正方形的面积可以分别求得两个正方形的边长是和,显然只需比较两个正方形的边长的和与7.5的大小即可【详解】两个面积是和的正方形木板的边长是和,;,;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板【考点】此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键