ImageVerifierCode 换一换
格式:DOCX , 页数:23 ,大小:442.78KB ,
资源ID:706730      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-706730-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022年最新人教版九年级数学上册期中综合测评试题 卷(Ⅱ)(详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022年最新人教版九年级数学上册期中综合测评试题 卷(Ⅱ)(详解版).docx

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知二次函数y = ax2 + bx + c(a0)的图象如图所示

2、,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个2、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人3、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78

3、米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD4、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD5、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D4二、多选题(5小题,每小题4分,共计20分)1、两个关于的一元二次方程和,其中,是常数,且如果是方程的一个根,那么下列各数中,一定是方程的根的是()ABC2D-22、在二次函数y=ax2+bx+

4、c,x与y的部分对应值如下表:则下列说法中正确的是()x2023y8003A图象经过原点;B图象开口向下; 线 封 密 内 号学级年名姓 线 封 密 外 C图象经过点(1,3);D当x0时,y随x的增大而增大;E方程ax2+bx+c=0有两个不相等的实数根3、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是()A23B32CD4、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y

5、1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x25、如果,是一元二次方程的两个根,那么的值是(),的值是()AB4CD2第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是_(写出一个即可)2、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少4件,那么将销售价定为_元时,才能使每天所获销售利润最大3、如图(1)是一个横断面为抛物线形

6、状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_4、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.5、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)四、解答题(5小题,每小题8分,共计40分)1、为增加农民收入,助力乡村振兴某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成 线 封 密 内 号学级年名姓 线

7、 封 密 外 本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8x40)满足的函数图象如图所示(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润2、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?3、解下列方程(1)x22x0;(2)2x23x104、在数学活动课上

8、,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)5、为培育和践行社会主义核心价值观,弘扬传统美德,学校决定购进相同数量的名著平凡的世界(简称A)和恰同学少年(简称B),其中A的标价比B的标价多25元,为此,学校划拨了1800元用于购买A,划拨了800元用于购买B(1)求A、B的标价各多少元?(2)阳光书店为支持学校的读书活动,决定将A、B两本名著的标价都降低

9、m%后卖给学校,这样,A的数量不变,B还可多买2m本,且总购书款不变,求m的值-参考答案-一、单选题1、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交

10、点,即对应方程有 线 封 密 内 号学级年名姓 线 封 密 外 两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键2、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的

11、人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.3、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了

12、二次函数的应用,熟练掌握待定系数法是解本题的关键.4、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线, 线 封 密 内 号学级年名姓 线 封 密 外 ,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键5、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小

13、值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质二、多选题1、AD【解析】【分析】利用方程根的定义去验证判断即可【详解】,是方程的一个根,是方程的一个根,是方程的一个根,即时方程的一个根.是方程的一个根,当x=时,是方程的根 线 封 密 内 号学级年名姓 线 封 密 外 故选:A,D【点睛】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键2、ACE【解析】【分析】根

14、据二次函数图象的性质,结合表中数据,逐一分析判断即可【详解】解:A、由表中数据可知,二次函数图象过,选项正确;B、函数图象过,则知对称轴为,当时,由表中数据知,y随x的增大而减小;当时,y随x的增大而增大,所以开口向上,选项错误;C、因为函数的对称轴为,所以由函数对称性知,关于对称,选项正确;D、当时,y随x的增大而增大,选项错误;E、当y=0时,方程ax2+bx+c=0有两个不相等的实数根,选项正确故选:ACE【点睛】本题考查二次函数的图象性质,根据相关知识点解题是关键3、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可

15、列出方程求解即可【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,当时,符合题意,原来的两位数是23,当时,符合题意,原来的两位数是32,原来的两位数是23或32,故选AB【点睛】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数4、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可

16、得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2, 线 封 密 内 号学级年名姓 线 封 密 外 另一个交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴

17、为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3与抛物线的交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的

18、位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没有交点5、AB【解析】【分析】根据根与系数的关系得到,再根据一元二次方程的根的定义可得,由此即可得出答案【详解】解:、是一元二次方程的两个根, 线 封 密 内 号学级年名姓 线 封 密 外 是一元二次方程的根,故选:AB【点睛】本题考查的是一元二次方程的根与系数的关系以及方程的根的定义,即,是一元二次方

19、程的两根时,熟练掌握一元二次方程根与系数的关系是解决本题的关键三、填空题1、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:此一元二次方程根的判别式,解得,则的值可以是0,故答案为:0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键2、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明确题

20、意,列出相应的函数关系式,利用二次函数的性质解答3、【解析】【分析】设出抛物线方程y=ax2(a0)代入坐标(-2,-3)求得a【详解】解:设出抛物线方程y=ax2(a0),由图象可知该图象经过(-2,-3)点,-3=4a, 线 封 密 内 号学级年名姓 线 封 密 外 a=-,抛物线解析式为y=-x2故答案为:【考点】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式4、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象

21、经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单.5、【解析】【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.四、解答题 线 封 密 内 号学级年名姓 线 封 密 外 1、(1);(2)最大利润为3840元【解析】【分析】(1)分

22、为8x32和32x40求解析式;(2)根据“利润(售价成本)销售量”列出利润的表达式,在根据函数的性质求出最大利润【详解】解:(1)当8x32时,设ykxb(k0),则,解得:,当8x32时,y3x216,当32x40时,y120,;(2)设利润为W,则:当8x32时,W(x8)y(x8)(3x216)3(x40)23072,开口向下,对称轴为直线x40,当8x32时,W随x的增大而增大,x32时,W最大2880,当32x40时,W(x8)y120(x8)120x960,W随x的增大而增大,x40时,W最大3840,38402880,最大利润为3840元【点睛】点评:本题以利润问题为背景,考查

23、了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值2、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x214

24、00x45000,w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【点睛】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式 线 封 密 内 号学级年名姓 线 封 密 外 3、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键4、见解析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得

25、【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【点睛】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念5、(1)45元,20元;(2)35【解析】【分析】(1)设B的标价为x元,则A的标价为(x+25)元,列方程,解方程即可;(2)将A、B两本名著的新标价计算出来,根据数量单价数量单价 ,列方程求解即可【详解】解:(1)设B的标价为x元,则A的标价为(x+25)元,列方程,解方程,得x=20,经检验,x=20是原方程的根,所以x+25=45,答:A的标价是45元,B的标价是20元;(2)将A、B两本名著的标价都降低m%后,A的标价为45(1- m%)元,B的标价为20(1- m%)元,原购买数量为A:40(本),变化后的购买数量:A种40本,B种(40+2m)本,根据题意,得4045(1- m%)+(40+2m)20(1- m%)=2600, 解得: 线 封 密 内 号学级年名姓 线 封 密 外 经检验:不合题意舍去,取 答:的值为【点睛】本题考查了分式方程的应用,熟记数量单价费用是解题的关键,注意分式方程必须要验根

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1