1、京改版八年级数学上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限2、下列算式正确的是(
2、)ABCD3、下列说法错误的是()A中的可以是正数、负数、零B中的不可能是负数C数的平方根一定有两个,它们互为相反数D数的立方根只有一个4、下列等式正确的是()A()2=3B=3C=3D()2=35、下列计算正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、(多选)下列语句及写成式子不正确的是()A9是81的算术平方根,即B的平方根是C1的立方根是D与数轴上的点一一对应的是实数2、下列各组数中,不互为相反数的是()A-2与B与C与D 与3、下列运算不正确的是()A+=B2+=2C3-=2D=-4、下列说法正确的是()ABC2的平方根是D5、下列运算结果不正确的是()ABCD第
3、卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若,则_2、7是_的算术平方根3、给出表格:0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则_(用含的代数式表示)4、+_5、若方程的解与方程的解相同,则_四、解答题(5小题,每小题8分,共计40分)1、解方程:(1)(2)2、计算:3、计算:(1);(2)4、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程5、计算:-参考答案-一、单选题1、D【解析】【分析】依据即可得到 进而得到直线不经过
4、的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数2、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键3、C【解析】【分析】按照平方根和立方根的性质判断即可【详解】A. 中的可以是正数、负数、零,正确,不符合题意;B. 中的不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数的
5、立方根只有一个,正确,不符合题意;故选:C【考点】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质4、A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可【详解】解:()2=3,A正确,符合题意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A【考点】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键5、C【解析】【分析】根据二次根式的性质和二次根式的运算法则分别判断【详解】解:A、不能合并,故选项错误;B、不能合并,故选项错误;C、,故选项正确;D、,故选项错误;故选:C【考点】本题考查了二次根式的混合
6、运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍二、多选题1、ABC【解析】【分析】根据平方根,算术平方根、立方根以及数轴与实数的关系逐项进行判断即可【详解】解:A、9是81的算术平方根,即=9,因此选项A符合题意;B、a2的平方根为=a,因此选项B符合题意;C、1的立方根是1,因此选项C符合题意;D、实数与数轴上的点一一对应,因此选项D不符合题意;故答案为:ABC【考点】本题考查了平方根、算术平方根、立方根以及数轴与实数,理解平方根、算术平方根、立方根的意义是正确判断的前提2、AB
7、D【解析】【分析】先化简,然后根据相反数的意义进行判断即可得出答案【详解】解:A. 与不是一组相反数,故本选项符合题意;B. =,所以与 不是一组相反数,故本选项符合题意;C. =2,=-2,所以与是一组相反数,故本选项不符合题意;D. =-2,=-2,所以与不是一组相反数,故本选项符合题意故选ABD【考点】本题考查了相反数,平方根,立方根等知识,能将各数化简并正确掌握相反数的概念是解题关键3、ABD【解析】【分析】根据二次根式的运算法则,逐一判断选项,即可【详解】解:A. +,不能合并,故该选项符合题意;B. 2+,不能合并,故该选项符合题意;C. 3-=2,正确,故不符合题意;D. =,故
8、该选项符合题意故选:ABD【考点】本题主要考查二次根式的运算,掌握二次根式的运算法则,合并同类二次根式法则,是解题的关键4、ABC【解析】【分析】直接根据立方根、二次根式的性质以及乘法运算法则进行判断即可【详解】解:A. ,故选项A正确,符合题意;B. ,故选项B正确,符合题意;C. 2的平方根是,故选项C正确,符合题意;D. ,故选项D错误,不符合题意;故选:ABC【考点】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0同时还考查了二次根式的性质5、BCD【解析】
9、【分析】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算,同样要注意的地方有:一是要确定好结果的符号,二是运算顺序不能颠倒【详解】A,正确;B,错误;C,错误;D,错误故答案选:BCD【考点】本题考查了分式的混合运算,解答本题的关键在于熟练掌握各知识点的概念和运算法则三、填空题1、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在,综上所述,符合条件的a的值为:1,
10、-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况2、49【解析】【分析】根据算术平方根的定义即可解答.【详解】解:因为=7,所以7是49的算术平方根.故答案为:49【考点】本题主要考查的是算术平方根,属于基础题,要求学生认真读题,熟记概念.3、【解析】【分析】根据题意易得,然后问题可求解【详解】解:由,则;故答案为:【考点】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键4、7【解析】【分析】本题涉及平方、三次根式化简2个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【详解】解:(3)2+927故
11、答案为7【考点】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方、三次根式等考点的运算5、【解析】【分析】求出第二个分式方程的解,代入第一个方程中计算即可求出a的值【详解】解:方程去分母得:3x6,解得:x2,经检验x2是分式方程的解,根据题意将x2代入第一个方程得:解得:,经检验是原分式方程的解,则故答案为:【考点】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值四、解答题1、(1)x=;(2)x=【解析】【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1),去分母,
12、得3x=2x+3(x+1),解得:x=,经检验,x=是原分式方程的解(2),去分母,得2-(x+2)=3(x-1),解得:x=,经检验,x=是原分式方程的解【考点】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根2、【解析】【分析】分别根据绝对值的代数意义、二次根式的乘法、分母有理化以及负整数指数幂的运算法则对各项进行化简,然后再进行加减运算即可【详解】解:=【考点】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键3、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算4、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型5、【解析】【分析】直接利用绝对值的性质以及立方根的性质分别化简得出答案【详解】解:原式=4+-2-2=【考点】本题考查实数运算,正确化简各数是解题关键