1、京改版八年级数学上册期中专题训练试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若一个正数的两个平方根分别为2a与3a6,则这个正数为()A2B4C6D362、已知,当时,则的值是()ABCD3
2、、已知 ,则 的值是()ABC2D-24、等于()A7BC1D5、下列二次根式中,与同类二次根式的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列计算中,正确的有()A(3xy2)39x3y6B(2x3)24x6C(a2m)3a6mD2a2a12a2、下列结论中不正确的是()A数轴上任一点都表示唯一的有理数B数轴上任一点都表示唯一的无理数C两个无理数之和一定是无理数D数轴上任意两点之间还有无数个点3、下列运算中,不正确的是()AB(2)24C(3.14)00D4、下列运算结果不正确的是()ABCD5、下列计算正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小
3、题5分,共计25分)1、若,则x与y关系是_2、式子有意义的条件是_3、计算:=_4、已知,则代数式的值是_.5、已知,则_四、解答题(5小题,每小题8分,共计40分)1、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程2、求下列各式中的x(1)x257;(2)(x+1)36403、计算4、计算:5、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?-参考答案-一、单选题1、D【解析】【分析】根据平方根的定义可得一个关于的一元一次方
4、程,解方程求出的值,再计算有理数的乘方即可得【详解】解:由题意得:,解得,则这个正数为,故选:D【考点】本题考查了平方根、一元一次方程的应用,熟练掌握平方根的定义是解题关键2、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口3、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键4、B【解析】【分析】根据二次根式的混合计算法则求解即可【详解】解:,故选B
5、【考点】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则5、B【解析】【分析】将每个选项化简成最简二次根式,再根据同类二次根式的定义逐一判断即可【详解】解:A.,与不是同类二次根式;B.,与是同类二次根式;C.与不是同类二次根式;D.与不是同类二次根式;故选:B【考点】本题考查同类二次根式,利用二次根式的性质将每个选项化简成最简二次根式是解题的关键二、多选题1、BD【解析】【分析】根据幂的运算即可依次判断【详解】A.(3xy2)327x3y6,故错误;B.(2x3)24x6,正确;C.(a2m)3-a6m,故错误;D. 2a2a12a,正确;故选BD【考点】此题主要考查
6、幂的运算,解题的关键是熟知同底数幂的运算法则及负指数幂的特点2、ABC【解析】【分析】根据实数与数轴上的点的对应关系和无理数的运算进行分析判断【详解】A选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;B选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;C选项:如,结果是有理数,故选项结论错误,符合题意;D选项:数轴上任意两点之间还有无数个点,故选项结论正确,不符合题意故选:ABC【考点】考查了实数与实数的运算,解题关键是利用了实数的运算与实数与数轴的对应关系3、ABC【解析】【分析】根据二次根式的性质化简,负整数指数幂,零指数幂以及二次根式的减法计算法则进行求解即可【
7、详解】解:A、原式|2|2,符合题意;B、原式,符合题意;C、原式1,符合题意;D、原式,不符合题意,故选ABC【考点】此题考查了二次根式的加减法,负整数指数幂和零指数幂,熟练掌握运算法则是解本题的关键4、BCD【解析】【分析】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算,同样要注意的地方有:一是要确定好结果的符号,二是运算顺序不能颠倒【详解】A,正确;B,错误;C,错误;D,错误故答案选:BCD【考点】本题考查了分式的混合运算,解答本题的关键在于熟练掌握各知识点的概念和运算法则5、CD【解析】【分析】利用幂的运算法
8、则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.三、填空题1、x+y=0【解析】【分析】先移项,然后两边同时进行三次方运算,继而可得答案.【详解】,()3=()3,x=-y,x+y=0,故答案为x+y=0.【考点】本题考查了立方根,明确是解题的关键.2、且【解析】【分析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x
9、-30,解得:,故答案为且.【考点】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.3、2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案【详解】原式(42)22故答案为2【考点】本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键4、1【解析】【分析】将化简得到,再代入代数式,即可解答.【详解】 ,则, 将代入,得: 故答案为1【考点】本题考查了分式的化简求值,本题主要利用整体思想,难度较大,找出x-y与xy的关系是解题关键.5、2
10、【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a,b的值,进而即可得出答案【详解】+|b1|=0,又,ab=0且b1=0, 解得:a=b=1,a+1=2.故答案为2【考点】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a、b的方程是解题的关键四、解答题1、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础
11、题型2、(1),;(2)【解析】【分析】(1)移项整理后,利用平方根的性质开方求解,并化简即可;(2)移项整理后,利用立方根的性质开方求解即可【详解】解:(1),;(2),【考点】本题考查解利用平方根和立方根的性质解方程,掌握平方根与立方根的基本性质,熟练利用整体思想是解题关键3、(1);(2)【解析】【分析】根据二次根式的性质和运算公式计算即可【详解】原式;原式【考点】本题考查了二次根式的混合运算,熟练掌握运算公式是解题的关键4、【解析】【分析】直接利用绝对值的性质以及立方根的性质分别化简得出答案【详解】解:原式=4+-2-2=【考点】本题考查实数运算,正确化简各数是解题关键5、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.