1、京改版七年级数学上册期末综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、规定向右移动3个单位记作,那么向左移动2个单位记作()ABCD2、已知与是同类项,则的值是()A2B3C4D53、2
2、019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面已知月球与地球之间的平均距离约为 384 000km,把 384 000km用科学记数法可以表示为()A38.4 10 4 kmB3.8410 5 kmC0.384 10 6 kmD3.84 10 6 km4、一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为()A6场B7场C8场D9场5、已知点M在数轴上表示的数是4,点N与点M的距离是3,则点N表示的数是()A1B7C1或7D1或1二、多选题(5小题,每小题4分,共计20分)1、A、
3、B、C三点在同一条直线上,MN分别是ABBC的中点,且AB=50,BC=30,则MN的长为()A10B20C30D402、下列各组中,是同类项的是()A与B与C与D与3、下列图形中,属于立体图形的是()ABCD4、下列说法中正确的有()A互为相反数的两个数绝对值相等;B绝对值等于本身的数只有正数;C不相等的两个数的绝对值可能相等;D绝对值相等的两数一定相等5、下列说法中正确的是()A计算的结果是1B如果,那么C若,则D若,则第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算:_2、对于任意有理数a、b,定义一种新运算“”,规则如下:abab+(ab),例如3232+(
4、32)7,则(5)4_3、若a,b互为相反数,则(a+b1)2016_4、中国古代的算筹计数法可追溯到公元前5世纪摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示, 表示2369,则 表示_5、若单项式与-5是同类项,则m+n=_;四、解答题(5小题,每小题8分,共计40分)1、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点2、一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):5,3,10,8,6,12,10(1)守门员最
5、后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?3、一只乌龟沿南北方向的河岸来回爬行,假定向北爬行的路程记为正数,向南爬行的路程记为负数,它爬行的过程记录如下(单位m):8,7,3,9,6,-4,10(1)乌龟最后距离出发点多远,在出发点的南边还是北边;(2)求乌龟在整个过程中一共爬行了多远的距离4、如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E
6、到点A的距离等于点E到点B的距离的2倍,写出点E表示的数5、计算:(1)710;(2)()(7.3);(3)1(2);(4)7(3.8)(7.2)-参考答案-一、单选题1、B【解析】【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示【详解】解:向右移动3个单位记作+3,那么向左移动2个单位记作-2故选:B【考点】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示2、B【解析】【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.【详解】解:与是同类项,n+1
7、=4,解得,n=3,故选:B.【考点】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同3、B【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】科学记数法表示:384 000=3.84105km故选B【考点】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、A【
8、解析】【分析】设该队前9场比赛共平了x场,则胜了(9-x)场根据共得21分列方程求解【详解】解:设该队前9场比赛共平了x场,则胜了(9-x)场根据题意得:3(9-x)+x=21,解得:x=39-x=6答:该队前9场比赛共胜了6场故选:A【考点】本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程5、C【解析】【分析】在数轴上与表示-4的点距离是4个单位长度的点有两个,一个在表示点M的左边3个单位长度,一个在点M的右边3个单位长度,由此求得答案即可【详解】解:在数轴上与表示-4的点距离是3个单位长度的点所表示的数是-4-3=-7或-4+3=-1点N表示的数是-7或-1故
9、选:C【考点】此题考查数轴上两点间的距离,分类探讨是解决问题的关键二、多选题1、AD【解析】【分析】根据题意画出图形,再根据图形求解即可【详解】解:(1)当C在线段AB延长线上时,如图1,M、N分别为AB、BC的中点,BM=AB=25,BN=BC=15;MN=BM+BN=25+15=40;(2)当C在AB上时,如图2,同理可知BM=25,BN=15,MN=BM-BN=25-15=10;所以MN=40或10,故选:AD【考点】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况2、ACD【解析】【分析】根据同类项的定义,即字母相同,相同字母的指数
10、相同判断即可;【详解】与是同类项;与不 是同类项;与是同类项;与是同类项;故选ACD【考点】本题主要考查了同类项的判断,准确分析是解题的关键3、ACD【解析】【分析】根据立体图形的定义:是各部分不都在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形,进行逐一判断即可【详解】解:A、是立体图形,符合题意;B、不是立体图形,不符合题意;C、是立体图形,符合题意;D、是立体图形,符合题意;故选ACD【考点】本题主要考查了立体图形的定义,解题的关键在于能够熟练掌握立体图形的定义4、AC【解析】【分析】根据相反数与绝对值的意义可对A进行判断;根据0的绝对值等于0可对B进行判断;利
11、用2与-2的绝对值相等,可对C、D进行判断【详解】解:A、互为相反数的两个数的绝对值相等,所以A选项正确;B、绝对值等于本身的数有正数或0,所以B选项错误;C、不相等的两个数绝对值可能相等,如2与-2,所以C选项正确;D、绝对值相等的两个数不一定相等,如2与-2,所以D选项错误故选:AC【考点】本题考查了绝对值:若a0,则|a|=a;若a=0,则|a|=0;若a0,则|a|=-a,掌握绝对值性质是解题关键5、BC【解析】【分析】根据有理数的乘除混合运算法则及顺序,等式的性质以及乘方和绝对值的意义逐个判断即可【详解】解:A、,故A选项错误;B、两边同时乘以c,得,故B选项正确;C、若,则,故C选
12、项正确;D、若,则,故D选项错误,故选:BC【考点】本题考查了有理数的乘除混合运算,等式的性质及乘方和绝对值的意义,熟练掌握相关运算法则及概念是解决本题的关键三、填空题1、1【解析】【分析】根据有理数的加法法则即可得【详解】原式,故答案为:1【考点】本题考查了有理数的加法,熟记运算法则是解题关键2、29【解析】【分析】根据abab+(ab),可以求得题目中所求式子的值,本题得以解决【详解】解:abab+(ab),(5)4(5)4+(5)4(20)+(9)29故答案为:29【考点】此题考查新定义运算,有理数的混合运算,掌握新定义的运算方法是解题的关键3、1【解析】【分析】根据相反数的性质得a+b
13、=0,再代入进行计算即可【详解】解:a,b互为倒数,a+b=0,(a+b1)2016,故答案为:1【考点】此题主要考查相反数的性质和有理数的乘方,关键是正确理解相反数的性质4、【解析】【分析】根据算筹记数的规定可知,“ ”表示一个4位负数,再查图找出对应关系即可得表示的数【详解】解:由已知可得:“ ”表示的是4位负整数,是故答案为:【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定5、5【解析】【分析】利用同类项的概念,相同字母的指数相同,来构造方程,解之求出m、n,再代入求值即可【详解】若单项式与-5是同类式,1+m=4,m=3,n=2,当m=3,n=2时
14、,m+n=3+2=5,故答案为:5【考点】本题考查同类项的概念,掌握同类项的概念,会用同类项的概念构造方程,会解方程,和求代数式的值是解题关键四、解答题1、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.2、(1)守门员最后回到了球门线的位置;(2)守门员全部练习结束后,他共跑了54米;(3)在练习过程中,守门员离开球门线的最远距离是12米【解析】【分析】(1)将所有记录数据相加,即可求出守门员离球门线的位置;(2)将所有记录数据取绝对值,再相加即可;(3
15、)通过列式计算可得守门员离开球门线最远距离【详解】解:(1)(5)(3)(10)(8)(6)(12)(10)(51012)(38610)27270,答:守门员最后回到了球门线的位置;(2)|5|3|10|8|6|12|10|531086121054;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:532(米);第3次守门员离开球门线:21012(米);第4次守门员离开球门线:1284(米);第5次守门员离开球门线:|46|2(米);第6次守门员离开球门线:|212|8(米);第7次守门员离开球门线:|810|2(米);所以在练习过程中,守门员
16、离开球门线的最远距离是12米3、(1)距离出发点5米,在出发点的北边;(2)47米【解析】【分析】(1)把记录到的所有数字相加,即可求解;(2)把记录到的所有的数字的绝对值相加,即可求解【详解】解:(1)-8+7-3+9-6-4+10=5,乌龟最后距离出发点5米,在出发点的北边;(2)8+7+3+9+6+4+10=47(米),乌龟在整个过程中一共爬行了47米【考点】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键4、 (1)(2)0.5(3)或【解析】【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点是线段的中点;(3)点可能在、之间,也可能在点
17、的左侧(1)解:点向右移动5个单位长度后,点表示的数为1;三个点所表示的数中最小的数是点,为(2)解:点到,两点的距离相等;故点为的中点表示的数为:0.5(3)解:当点在、之间时,从图上可以看出点为,点表示的数为;当点在点的左侧时,根据题意可知点是的中点,点表示的数是综上:点表示的数为或【考点】本题主要考查的是数轴的认识,解题的关键是找出各点在数轴上的位置5、(1);(2)-7.8;(3);(4)-3.8【解析】【分析】(1)根据有理数加减运算法则计算即可;(2)根据有理数加减运算法则计算即可;(3)根据有理数加减运算法则计算即可;(4)根据有理数加减运算法则计算即可【详解】解:(1)原式=;(2)原式=;(3)原式=;(4)原式=【考点】本题考查有理数运算,熟知有理数运算法则是解题的关键