1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测试试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外
2、三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()Ax(262x)=80Bx(242x)=80C(x1)(262x)=80D(x-1)(252x)=802、设方程的两根分别是,则的值为()A3BCD3、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)4、已知学校航模组设计制作的火箭升空高度h(m
3、)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m5、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-2二、多选题(5小题,每小题4分,共计20分)1、在图所示的4个图案中不包含图形的旋转的是()ABCD2、如图,若二次函数yax2+bx+c(a0)的图象的对称轴是直线x1,则下列四个结论中,错误的是() 线 封 密 内 号学级年名姓 线 封 密 外 Aabc0B2ab0C4acb20D4a+c2b3、下列各数不是方程解的
4、是()A6B2C4D04、对于二次函数y=2(x1)(x+3),下列说法不正确的是()A图象的开口向上B图象与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=15、如图是抛物线y1ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是()A2a+b0Bm+n3C抛物线与x轴的另一个交点是(1,0)D方程ax2+bx+c3有两个相等的实数根E当1x4时,有y2y1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若抛物线 的图像与轴有
5、交点,那么的取值范围是_.2、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_3、已知二次函数,当x_时,y取得最小值4、如图,在RtABC中,C=90,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动点P、Q同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,当PQC的面积为3cm2时,P、Q运动的时间是_秒5、若函数图像与x轴的两个交点坐标为和,则_四、解答题(5小题,每小题8分,共计40分)1、
6、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近? 线 封 密 内 号学级年名姓 线 封 密 外 2、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值3、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设
7、点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标4、已知关于x的一元二次方程有两个相等的实数根,求的值5、判断2、5、-4是不是一元二次方程的根-参考答案-一、单选题1、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x
8、(26-2x)=80故答案为A【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键2、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率3、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结
9、合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键4、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方
10、成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质5、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关
11、系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x2二、多选题1、AC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【点睛】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键
12、2、BD【解析】【分析】根据图象得出a,b,c的符号,即可判断A选项,由对称轴的位置即可判断B选项,由抛物线与x轴的交点个数即可判断C选项,由图象知x2和x0时y的值相等,由此可判断D选项【详解】解:抛物线的开口向下,a0,抛物线与y轴的交点在x轴上方,c0,抛物线的对称轴为直线x1,b2a0,abc0,故A选项不合题意,b2a,2a-b0,故B选项合题意,抛物线与x轴有两个交点,b24ac0,4acb20,C选项不合题意,抛物线的对称轴为直线x1,x3和x0时,y的值相等,当x=-2时,y0,4a2b+c0,4a+c2b,D选项符合题意,故选:BD【点睛】本题考查了二次函数图象与系数的关系,
13、其中a符号由抛物线的开口方向决定;当对称轴在y轴的左侧时,a与b同号;当对称轴在y轴的右侧时,a与b异号;c的符号由抛物线与y轴的交点决定;根的判别式的符号由抛物线与x轴交点个数决定;此外还要找出图象上的特殊点对应的函数值得正负进行判断 线 封 密 内 号学级年名姓 线 封 密 外 3、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0代入得:,故0不是方程解,符合题意;故选:ACD【点睛】此题考查了一元二次方程解得
14、含义,解题的关键是熟练掌握一元二次方程解得含义4、ACD【解析】【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项错误,符合题意;B、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:A
15、CD【点睛】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可5、ABD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可【详解】解:A、抛物线对称轴为直线,故A正确;B、直线y2mx+n(m0)与抛物线交于A,B两点,当时,故B正确;C、抛物线与x轴的一个交点为,对称轴为, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线与x轴的另一个交点是,故C错误;D、方程ax2+bx+c3从函数角度可以看作是y1ax2+bx+c与直线求交点,从图像可以知道,抛物线顶点为,从抛物线与直线有且只有一个交点,故方程ax
16、2+bx+c3有两个相等的实数根,故D正确;E、由图像可知,当时,故E错误;故选:ABD【点睛】本题考查了二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解答关键是数形结合三、填空题1、【解析】【分析】由抛物线 的图像与轴有交点可知,从而可求得的取值范围【详解】解:抛物线 的图像与轴有交点令,有,即该方程有实数根故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键2、【解析】【分析】设出抛物线方程y=ax2(a0)代入坐标(-2,-3)求得a【详解】解:设出抛物线方程y=ax2(a0),由图象
17、可知该图象经过(-2,-3)点,-3=4a,a=-,抛物线解析式为y=-x2故答案为:【考点】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式3、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为,且开口方向向上, 线 封 密 内 号学级年名姓 线 封 密 外 当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法4、1【解析】【分析】设P、Q运动的时间是秒,根据已知条件得到cm,cm ,则cm ,根据三角形面积公式列出
18、方程,解方程即可求解【详解】解:设P、Q运动的时间是秒,则cm,cm ,cmPQC的面积为3cm2,即,解得或(不合题意,舍去),当PQC的面积为3cm2时,P、Q运动的时间是1秒故答案为:1【考点】本题考查了一元二次方程应用动点问题,三角形的面积,正确的理解题意是解题的关键5、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的
19、关键四、解答题1、当t=(在0t1的范围内)时, S的最小值为千米【解析】【分析】设两人均出发了t时,根据勾股定理建立甲、乙之间的距离与时间t的函数关系式,然后求出二次函数在一定的取值范围内的最值即可得解.【详解】设两人均出发了t时, 则此时甲到A地的距离是(44t)千米, 乙离A地的距离是4t千米, 由勾股定理, 得甲, 乙两人间的距离为:S=,当t=(在0t1的范围内)时, S的最小值为千米.【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查二次函数的实际应用,关键在于根据题意写出二次函数关系式,再利用求二次函数的最值方法求最值.2、 (1)证明见解析(2)1(答案不唯一)【
20、解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可(1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有一根小于2,m2,m2,m为整数,满足条件的m的一个值为1【点睛】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根3、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物
21、线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0), 线 封 密 内 号学级年名姓 线 封 密 外 则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x
22、+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t, 线 封 密 内 号学级年名姓 线 封 密 外 当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)
23、或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键4、4【解析】【分析】先根据一元二次方程根的判别式可得,从而可得,再代入计算即可得【详解】解:关于的一元二次方程有两个相等的实数根,此方程根的判别式,即,则,【点睛】本题考查了一元二次方程根的判别式、代数式求值,熟练掌握一元二次方程根的判别式是解题关键5、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.