1、京改版八年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列实数中,为有理数的是()ABC1D2、估计的结果介于()A与之间B与之间C与之间D与之间3、下列说法中,正确的
2、是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实数可以分为正实数和负实数两类4、已知 ,则 的值是()ABC2D-25、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度如果设船在静水中的速度为x千米/时,可列出的方程是()ABCD二、多选题(5小题,每小题4分,共计20分)1、已知,则的大小关系是()ABCD2、下列计算正确的是()ABCD3、以下几个数中无理数有()ABCDE4、下列计算中正确的是()ABCD5、下列说法正确的是()A是的平方根B的平方根是C的算术平方根是D的立方根是第卷(非选择
3、题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算:=_2、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为_人3、将下列各数填入相应的括号里:整数集合;负分数集合;无理数集合4、计算的结果是_5、已知,则的值是_四、解答题(5小题,每小题8分,共计40分)1、阅读理解题:定义:如果一个数的平方等于-1,记为,这个数i叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为(,为实数),叫做这个复数的实部,叫做这个复数的虚部,它与整式的加法,减法
4、,乘法运算类似例如:解方程,解得:,同样我们也可以化简读完这段文字,请你解答以下问题:(1)填空:_,_,_(2)已知,写出一个以,的值为解的一元二次方程(3)在复数范围内解方程:2、计算:(1)(2)3、计算(1);(2)4、先化简,再求值:,其中x取不等式组的适当整数解5、在解决问题“已知,求的值”时,小明是这样分析与解答的:,即.请你根据小明的分析过程,解决如下问题:(1)化简:;(2)若,求的值.-参考答案-一、单选题1、C【解析】【分析】根据有理数是有限小数或无限循环小数可判断C,无理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考点】本题考查了实
5、数,正确区分有理数与无理数是解题的关键2、A【解析】【分析】先利用二次根数的混合计算法则求出结果,然后利用无理数的估算方法由得到,从而求解【详解】解:,的结果介于-5与之间故选A【考点】本题主要考查了二次根式的混合运算和无理数的估算,解题的关键在于能够熟练掌握相关知识进行求解3、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型4、C【解析】【分析】将条件变形为
6、,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键5、A【解析】【分析】未知量是速度,有路程,一定是根据时间来列等量关系的关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间【详解】顺流所用的时间为:;逆流所用的时间为:.所列方程为:.故选A【考点】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.二、多选题1、AD【解析】【分析】先根据幂的运算法则进行计算,再比较实数的大小即可得出结论【详解】 故不符合题意,符合题意,故选择:AD【考点】此题主要考
7、查幂的运算,解题的关键是正确理解零指数幂以及负指数幂的运算法则2、BD【解析】【分析】根据二次根式加法法则,乘法和除法法则,二次根式化简,然后分析作出判断即可【详解】解:A ,选项错误,不符合题意B ,选项正确,符合题意C ,选项错误,不符合题意D ,选项正确,符合题意故选:B、D【考点】本题考查了二次根式的运算,二次根式的化简,是解题的关键3、BE【解析】【分析】根据有理数和无理数的定义逐项判断即可得【详解】解:A、,2是有理数,此项不符题意;B、是无理数,此项符合题意;C、是分数,属于有理数,此项不符题意;D、是无限循环小数,是有理数,此项不符题意;E、是无理数,此选项符合题意;故选BE【
8、考点】本题考查了无理数和有理数的定义,熟记定义是解题关键4、AC【解析】【分析】根据二次根式除法法则计算并判定A;根据二次根式乘方运算法则计算并判定B;根据二次根式性质化简判定C;根据二次根式加法运算法则计算判定D【详解】解:A、,故此选项符合题意;B、,故此选项不符合题意;C、,故此选项符合题意;D、,不是同类二次根式不能合并,故此选项不符合题意;故选:AC【考点】本题考查二次根式的运算,熟练掌握二次根式除法、乘方、加法的运算法则,二次根式性质是解题的关键5、AC【解析】【分析】根据平方根、算术平方根、立方根的定义逐项分析即可【详解】A.(-4)2=16,是的平方根,正确;B.的平方根是,故
9、错误;C.=3,的算术平方根是,正确;D.的立方根是-,故错误;故选AC【考点】本题考查了平方根、算术平方根、立方根的定义,熟练掌握定义是解答本题的关键三、填空题1、2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案【详解】原式(42)22故答案为2【考点】本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键2、300【解析】【分析】先设第一次的捐款人数是x人,根据两次人均捐款额恰好相等列出方程,求出x的值,再进行检验即可求出答案【详解】解:设第一次的捐款人数是x人,根据题意得:,解得:x300,经
10、检验x300是原方程的解,故答案为300【考点】此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验3、见解析【解析】【分析】先化简,后根据整数包括正整数,0,负整数;负分数,无理数的定义去判断解答即可【详解】-|-0.7|=-0.7,是负分数,-(-9)=9,是整数,是负分数,0是整数,8是整数,-2是整数,是无理数,是正分数,是无限不循环小数,是无理数,是无限循环小数,是有理数,是负分数,整数集合-(-9),0,8, -2 ;负分数集合-|-0.7|, , ;无理数集合, 故答案为:-(-9),0,8,-2;-|-0.7|, ,;,【考点】本
11、题考查了有理数,无理数,熟练掌握各数的定义,特征,并合理化简判断是解题的关键4、 【解析】【详解】【分析】根据分式的加减法法则进行计算即可得答案【详解】原式=,故答案为.【考点】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.5、【解析】【分析】由条件,先求出的值,再根据平方根的定义即可求出的值【详解】解:,故答案为:【考点】本题主要考查了完全平方公式的变形求值以及平方根,熟悉完全平方公式的结构特点及平方根的定义是解题的关键四、解答题1、(1)-i,1,0;(2);(3),【解析】【分析】(1)根据题意,则,然后计算即可;(2)利用,得到,即可求解(3)利用配方
12、法求解即可【详解】(1),同理:,每四个为一组,和为0,共有组,(2),以,的值为解的一元二次方程可以为:(3),【考点】本题考查了实数的运算,解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键2、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算3、(1) ;(2)【解析】【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变
13、,指数相加(减),即可求解【详解】解:(1)原式;(2)原式【考点】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键4、,-3或【解析】【分析】先进行分式去括号,结合完全平方式和因式分解进行分式的混合运算,得到化简后的分式再解不等式组,得出x的取值范围,且注意使原分式有意义的条件,即可得出x的具体值,将其带入化简后的分式即可【详解】原式解不等式组得其整数解为-1,0,1,2,3由题得:,x可以取0或2分当时,原式(当时,原式)【考点】本题考查分式的化简求值,和解不等式组解题时需注意使分式有意义的条件5、(1);(2)2【解析】【分析】(1)根据分母有理化的方法可以解答本题;(2)根据题目中的例子可以灵活变形解答本题【详解】解:(1) (2) 【考点】二次根式的化简求值,熟练掌握分母有理化的方法是解题的关键.