ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.06MB ,
资源ID:699326      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-699326-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(导数部分.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

导数部分.doc

1、 导数部分1、(广东卷)函数是减函数的区间为(D)()()()()2.(全国卷)函数,已知在时取得极值,则=(B)(A)2(B)3(C)4(D)53. (湖北卷)在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是( D )-22O1-1-11A3B2C1D04(江西)已知函数的图象如右图所示(其中是函数的导函数),下面四个图象中的图象大致是(C )O-221-1-212O-2-221-112O-241-1-212O-22-124ABCD5.(浙江)函数yax21的图象与直线yx相切,则a( B )(A) (B) (C) (D)16. (重庆卷)曲线y=x3在点(1,1)处的切线与

2、x轴、直线x=2所围成的三角形的面积为_8/3_。7.(江苏卷)(14)曲线在点(1,3)处的切线方程是8. ( 全国卷III)曲线在点(1,1)处的切线方程为x+y-2=0 9. (北京卷)过原点作曲线yex的切线,则切点的坐标为 (1, e); ,切线的斜率为e 10.(全国卷)设a为实数,函数 ()求的极值.()当a在什么范围内取值时,曲线轴仅有一个交点.解:(I)=321若=0,则=,=1当变化时,变化情况如下表:(,)(,1)1(1,+)+00+极大值极小值的极大值是,极小值是(II)函数由此可知,取足够大的正数时,有0,取足够小的负数时有0,所以曲线=与轴至少有一个交点结合的单调性

3、可知:当的极大值0即(1,+)时,它的极大值也大于0,因此曲线=与轴仅有一个交点,它在(,)上。当(1,+)时,曲线=与轴仅有一个交点。11. (全国卷)已知a 0 ,函数f(x) = ( -2ax ) (1) 当X为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在 -1,1上是单调函数,求a的取值范围.解:(I)对函数求导数得令得+2(1)2=0从而+2(1)2=0 解得 当 变化时,、的变化如下表 + 0 0 +递增极大值递减 极小值 递增在=处取得极大值,在=处取得极小值。当0时,1,在上为减函数,在上为增函数而当时=,当x=0时,所以当时,取得最小值(II)当0时,在上

4、为单调函数的充要条件是 即,解得于是在-1,1上为单调函数的充要条件是即的取值范围是12. ( 全国卷III)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x,容器的体积为V,1分则V=(90-2x)(48-2x)x,(0V24)5分 =4x3-276x2+4320xV=12 x2-552x+43207分由V=12 x2-552x+4320=0得x1=10,x2=36x0,10x36时,V36时,V0,所以,当x=10,V有极大值V(10)=

5、196010分又V(0)=0,V(24)=0,11分所以当x=10,V有最大值V(10)=196012分13. ( 全国卷III)已知函数,()求的单调区间和值域;()设,函数,若对于任意,总存在,使得成立,求的取值范围解:对函数求导,得 令解得 或当变化时,、的变化情况如下表:x00所以,当时,是减函数;当时,是增函数; 当时,的值域为()对函数求导,得 因此,当时, 因此当时,为减函数,从而当时有 又,即当时有任给,存在使得,则即解式得 或解式得 又,故:的取值范围为14. (北京卷)已知函数f(x)=x33x29xa, (I)求f(x)的单调递减区间;(II)若f(x)在区间2,2上的最

6、大值为20,求它在该区间上的最小值 解:(I) f (x)3x26x9令f (x)0,解得x3, 所以函数f(x)的单调递减区间为(,1),(3,) (II)因为f(2)81218a=2a,f(2)81218a22a, 所以f(2)f(2)因为在(1,3)上f (x)0,所以f(x)在1, 2上单调递增,又由于f(x)在2,1上单调递减,因此f(2)和f(1)分别是f(x)在区间2,2上的最大值和最小值,于是有 22a20,解得 a2 故f(x)=x33x29x2,因此f(1)13927, 即函数f(x)在区间2,2上的最小值为715(福建卷)已知函数的图象过点P(0,2),且在点M(1,f(

7、1)处的切线方程为. ()求函数的解析式;()求函数的单调区间.解:()由的图象经过P(0,2),知d=2,所以由在处的切线方程是,知故所求的解析式是 ()解得 当当故内是增函数,在内是减函数,在内是增函数.16(福建卷)已知函数的图象在点M(1,f(x))处的切线方程为x+2y+5=0.()求函数y=f(x)的解析式;()求函数y=f(x)的单调区间. 解:(1)由函数f(x)的图象在点M(1f(1))处的 切线方程为x+2y+5=0,知 17. (湖北卷)已知向量在区间(1,1)上是增函数,求t的取值范围.解法1:依定义开口向上的抛物线,故要使在区间(1,1)上恒成立.解法2:依定义的图象

8、是开口向下的抛物线,18(湖南卷)设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.()用表示a,b,c;()若函数在(1,3)上单调递减,求的取值范围.解:(I)因为函数,的图象都过点(,0),所以, 即.因为所以.又因为,在点(,0)处有相同的切线,所以而将代入上式得 因此故,(II)解法一.当时,函数单调递减.由,若;若由题意,函数在(1,3)上单调递减,则所以又当时,函数在(1,3)上单调递减.所以的取值范围为解法二:因为函数在(1,3)上单调递减,且是(1,3)上的抛物线,所以 即解得所以的取值范围为19.(湖南卷)已知函数f(x)lnx,g(x)ax2bx

9、,a0. ()若b2,且h(x)f(x)g(x)存在单调递减区间,求a的取值范围; ()设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.解:(I),则因为函数h(x)存在单调递减区间,所以0时,则ax2+2x10有x0的解.当a0时,y=ax2+2x1为开口向上的抛物线,ax2+2x10总有x0的解;当a0总有x0的解; 则=4+4a0,且方程ax2+2x1=0至少有一正根.此时,1a0. 综上所述,a的取值范围为(1,0)(0,+). (II)证法一 设点P、Q的坐标分别是(

10、x1, y1),(x2, y2),0x1x2. 则点M、N的横坐标为 C1在点M处的切线斜率为 C2在点N处的切线斜率为 假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2. 即,则 =所以 设则令则因为时,所以在)上单调递增. 故则. 这与矛盾,假设不成立.故C1在点M处的切线与C2在点N处的切线不平行.证法二:同证法一得因为,所以令,得 令因为,所以时,故在1,+上单调递增.从而,即于是在1,+上单调递增.故即这与矛盾,假设不成立.故C1在点M处的切线与C2在点N处的切线不平行.20(辽宁卷)函数在区间(0,+)内可导,导函数是减函数,且 设是曲线在点()得的切线方程,并设函数

11、()用、表示m; ()证明:当; ()若关于的不等式上恒成立,其中a、b为实数, 求b的取值范围及a与b所满足的关系.解:()2分 ()证明:令 因为递减,所以递增,因此,当; 当.所以是唯一的极值点,且是极小值点,可知的最小值为0,因此即6分 ()解法一:,是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为于是的充要条件是10分综上,不等式对任意成立的充要条件是 显然,存在a、b使式成立的充要条件是:不等式 有解、解不等式得 因此,式即

12、为b的取值范围,式即为实数在a与b所满足的关系.12分()解法二:是不等式成立的必要条件,以下讨论设此条件成立. 对任意成立的充要条件是 8分令,于是对任意成立的充要条件是 由当时当时,所以,当时,取最小值.因此成立的充要条件是,即10分综上,不等式对任意成立的充要条件是 显然,存在a、b使式成立的充要条件是:不等式 有解、解不等式得因此,式即为b的取值范围,式即为实数在a与b所满足的关系.12分21. (山东卷)已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.解(I)因为是函数的一个极值点,所以,即

13、,所以(II)由(I)知,=当时,有,当变化时,与的变化如下表:100调调递减极小值单调递增极大值单调递减故有上表知,当时,在单调递减,在单调递增,在上单调递减.(III)由已知得,即又所以即设,其函数开口向上,由题意知式恒成立,所以解之得又所以即的取值范围为22.(重庆卷)设函数f(x)=2x3-3(a+1)x2+6ax+8,其中aR。 (1) 若f(x)在x=3处取得极值,求常数a的值;(2) 若f(x)在(-,0)上为增函数,求a的取值范围。解:()因取得极值, 所以 解得经检验知当为极值点.()令当和上为增函数,故当上为增函数.当上为增函数,从而上也为增函数. 综上所述,当上为增函数.

14、23. (重庆卷)已知aR,讨论函数f(x)=ex(x2+ax+a+1)的极值点的个数。19(本小题13分)解:令=0得(1)当即4时有两个不同的实根,不妨设于是,从而有下表xx1+00+为极大值为极小值即此时有两个极值点.(2)当=0即=0或=4时,方程有两个相同的实根于是故当0,当时0,因此无极值(3)当0即00时,,作出其草图见右, 易知有两个极值点借助于图像可知当时,函数在区间1,2上为增函数,此时当时,显然此时函数的最小值为当时,此时在区间为增函数,在区间上为减函数,又可得则当时,此时当时,此时当时,,此时在区间为增函数,故(II)当时,此时在区间也为增函数,故(III)当时,其草图见右显然函数在区间为增函数,故

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3