1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下面计算正确的是()ABCD2、下列倡导节约的图案中,是轴对称图形的
2、是()ABCD3、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D24、如图,一束太阳光线平行照射在放置于地面的正六边形上,若,则的度数为( )ABCD5、下列因式分解正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列图形是轴对称图形且有两条对称轴的是()ABCD2、下列图形中,是轴对称图形的是()ABCD3、下列各式中,无论x取何值,分式都没有意义的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD4、如图,已知,下列结论
3、正确的有()ABCD5、下列说法中正确的是()A两个三角形关于某直线对称,那么这两个三角形全等B两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C两个图形关于某直线对称,对应点的连线不一定垂直对称轴D若直线l同时垂直平分,那么线段第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,的度数为_2、如图,为内部一条射线,点为射线上一点,点分别为边上动点,则周长的最小值为_3、分解因式:_4、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则_5、分解因式:_.四、解答题(5小题,每小题8分,共计40分)1、先化简再求值:,其中x=-22、问题情景:如图1
4、,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由; 线 封 密 内 号学级年名姓 线 封 密 外 (3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式3、如图,在平面直角坐标系中,A(2,4),B(3,1),C(1,2)(1)在图中作出ABC关于y轴的对称图形ABC;(2)写出点A、B、C的坐标;(3)连接OB、OB,请直接回答:O
5、AB的面积是多少?OBC与OBC这两个图形是否成轴对称4、解分式方程:5、现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?-参考答案-一、单选题1、C【解析】【分析】根据
6、合并同类项法则,积的乘方、同底数幂乘法法则逐一判断即可得答案.【详解】A.2a和3b不是同类项,不能合并,故该选项计算错误,不符合题意,B.a2和a3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a3b2)3=-8a9b6,故该选项计算正确,符合题意,D.a3a2=a5,故该选项计算错误,不符合题意,故选C.【考点】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键.2、C【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解【详解】解:A、不是轴对称图形,故此选项错误;B、不是轴对
7、称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误 线 封 密 内 号学级年名姓 线 封 密 外 故选C【考点】此题主要考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质4、A【解析】【分析】先求出正六边
8、形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解【详解】解:正六边形的每个内角等于120,每个外角等于60,FAD=120-1=101,ADB=60,ABD=101-60=41光线是平行的,=ABD=,故选A【考点】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键5、D【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据因式分解的方法,逐项分解即可【详解】A. ,不能因式分解,故该选项不正确,不符合题意;B. 故该选项不正确,不符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项正确,符合题意
9、故选D【考点】本题考查了因式分解,掌握因式分解的方法是解题的关键二、多选题1、AB【解析】【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解【详解】解:是轴对称图形且有两条对称轴,故本选项正确;是轴对称图形且有两条对称轴,故本选项正确;是轴对称图形且有4条对称轴,故本选项错误;不是轴对称图形,故本选项错误故选:AB【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、ACD【解析】【分析】根据轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可【详解】解:A、是轴对称图形,此项正确;B、不是轴对称
10、图形,此项错误;C、是轴对称图形,此项正确;D、是轴对称图形,此项正确.故选ACD【考点】本题考查了轴对称图形的概念,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合.3、BCD【解析】【分析】根据分式有意义的条件分析四个选项哪个方式分母不为零,进而可得答案【详解】A、 , ,则,无论 取何值,分式都有意义,故此选项正确; 线 封 密 内 号学级年名姓 线 封 密 外 B、当时,分式分母=0,分式无意义,故此选项错误;C、当时,分式分母=0,分式无意义,故此选项错误;D、当时,分式分母=0,分式无意义,故此选项错误故选BCD【考点】此题主要
11、考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零4、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键5、ABD【解析】【分析】根据轴对称图形的性质分别判断得
12、出即可【详解】解:A、两个三角形关于某条直线对称,那么这两个三角形全等,正确,符合题意; B、两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上,正确,符合题意;C、两个图形关于某直线对称,对应点的连线段一定垂直对称轴,故此选项错误,不符合题意;D、若直线l同时垂直平分AA、BB,则线段AB=AB,正确,符合题意故选:ABD【考点】本题主要考查了轴对称图形的性质,正确把握轴对称图形的性质是解题关键三、填空题1、 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据多边形的外角和定理即可求解【详解】解:由多边形的外角和定理知,1+2+3+4=360,故答案是:360【考点】
13、本题考查了多边形的外角和定理,理解定理是关键2、6【解析】【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,PMN的最小周长为PMMNPNP1MMNP2NP1P2,即为线段P1P2的长,连结OP1、OP2,则OP1OP2OP6,又P1OP22AOB60,OP1P2是等边三角形,P1P2OP16,即PMN的周长的最小值是6故答案是:6【考点】本题考查了等边三角形
14、的性质和判定,轴对称最短路线问题的应用,关键是确定M、N的位置3、【解析】【分析】原式利用十字相乘法分解即可【详解】原式=(x-2)(x+5),故答案为:(x-2)(x+5)【考点】此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键4、12【解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解: 的中垂线交于点, ,的周长为22, 故答案为:【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键5、(m+3)(m-3)【解析】【分析】先利用多项式的乘法运算法则展开,合
15、并同类项后再利用平方差公式分解因式即可【详解】故答案为【考点】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般形式是解题的关键.四、解答题1、,16【解析】【分析】根据多项式乘法的计算法则和平方差公式化简原式后再把x的值代入计算即可【详解】解:原式当时,原式=【考点】本题考查整式的化简求值,根据多项式乘法的计算法则和平方差公式对原式进行化简是解题关键2、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+
16、ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A; 线 封 密 内 号学级年名姓 线 封 密 外 证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-
17、A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.3、(1)见解析;(2)A(2,4),B(3,1)
18、,C(1,2);(3)5;是;OBC与OBC这两个图形关于y轴成轴对称【解析】【分析】(1)先确定A、B、C关于y轴的对称点A、B、C,然后再顺次连接即可;(2)直接根据图形读出A、B、C的坐标即可;(3)运用OAB所在的矩形面积减去三个三角形的面积即可;根据图形看OBC与OBC是否有对称轴即可解答【详解】解:(1)如图;ABC即为所求;(2)如图可得:A(2,4)B(3,1)C(1,2);(3)OAB的面积为:43-31-42-31=5; 线 封 密 内 号学级年名姓 线 封 密 外 OBC与OBC这两个图形关于y轴成轴对称OBC与OBC这两个图形关于y轴成轴对称【考点】本题主要考查了轴对称
19、变换和不规则三角形面积的求法,作出ABC关于y轴的对称图形ABC以及运用拼凑法求不规则三角形的面积成为解答本题的关键4、【解析】【分析】两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解整式方程,然后检验即可【详解】解:两边同乘,得:3x+x+24,解得:,检验,当时,是原方程的解【考点】本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键5、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独完成此项工程需要多少个月而后算出乙单独完成需要的时间
20、;(2)两个关系式:甲乙两个工程队需完成整个工程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为2, 线 封 密 内 号学级年名姓 线 封 密 外 答:乙队最多调走2人【考点】本题考查了分式方程的应用以及不等式解法与应用,利用总工作量为1得出等式方程是解决问题的关键