1、八年级数学上册第十四章整式的乘法与因式分解达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,则M与N的大小关系为()ABCD2、下列计算正确的是()ABCD3、若,则的值为()A3B6C9D1
2、24、计算:=()ABCD5、计算(0.25)2020(4)2019的结果是()A4B4CD6、下列运算正确的是()ABCD7、下列各式因式分解正确的是()Aa2+4ab+4b2=(a+4b)2B2a2-4ab+9b2=(2a-3b)2C3a2-12b2=3(a+4b)(a-4b)Da(2a-b)+b(b-2a)=(a-b)(2a-b)8、若多项式因式分解的结果为,则常数的值为()AB2CD69、计算()201932020 的结果为 ()A1B3CD202010、计算的结果为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:5x25y2_2、分母有理
3、化_3、已知三角形的面积为,一边长为,则这条边上的高为_4、已知ab=a+b+1,则(a1)(b1)=_5、因式分解:_三、解答题(5小题,每小题10分,共计50分)1、某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简。(2)记长方形空地的面积为S1,花圃的面积为S2,若2S2-S1=7b2,求的值.2、先化简,再求值:,其中,3、先化简,再求值:(a+)(a)+a(a6),其中a4、5、李明计划三天看完一本书,于是预计一下第一天看的页数,实际上第二天看的页数比第一天看的页数多50页,第三天
4、看的页数比第二天看的页数的还多85页(1)设第一天读书页数为x,请你用代数式表示这本书的页数;(2)若第一天看了150页,求这本书的页数-参考答案-一、单选题1、B【解析】【分析】利用完全平方公式把N-M变形,根据偶次方的非负性解答【详解】解:N-M=(m2-3m)-(m-4)=m2-3m-m+4=m2-4m+4=(m-2)20,N-M0,即MN,故选:B【考点】本题考查的是完全平方公式的应用,掌握完全平方公式、偶次方的非负性是解题的关键2、B【解析】【分析】由题意直接依据幂的乘方和积的乘方以及同底数幂的乘法逐项进行计算判断即可.【详解】解:A. ,此选项计算错误;B. ,此选项计算正确;C.
5、 ,此选项计算错误;D. ,此选项计算错误.故选:B.【考点】本题考查整式的乘法,熟练掌握幂的乘方和积的乘方以及同底数幂的乘法运算法则是解题的关键.3、C【解析】【详解】a+b=3,a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9故选C4、B【解析】【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:(2a)(ab)=2a2b故选B.【考点】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.5、C【解析】【分析】直接利用积的乘方运算法则将原式变形得出答案【详解】直接利用积的乘方运算法则将原式变形得出答案解:
6、(0.25)2020(4)2019(0.254)2019(0.25)0.25故选:C【考点】此题主要考查了积的乘方运算法则,正确将原式变形是解题关键6、A【解析】【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可【详解】A选项,选项正确,故符合题意;B选项,选项错误,故不符合题意;C选项,选项错误,故不符合题意;D选项,选项错误,故不符合题意故选:A【考点】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键7、D【解析】【分析】根据因式分解的定义:把一个多项式写成几个因式的积的形式进行判断即可【详解】a2+4a
7、b+4b2=(a+2b)2,故选项A不正确;2a2-4ab+9b2=(2a-3b)2不是因式分解,B不正确;3a2-12b2=3(a+2b)(a-2b),故选项C不正确;a(2a-b)+b(b-2a)=(a-b)(2a-b)是因式分解,D正确,故选D【考点】本题考查的是因式分解的概念,把一个多项式写成几个因式的积的形式叫做因式分解,在判断一个变形是否是因式分解时,看是否是积的形式即可8、B【解析】【分析】根据多项式的乘法法则计算出的结果,然后与比较即可【详解】解:=x2+2x-8=,m=2故选B【考点】此题考查了十字相乘法和整式的乘法,熟练掌握因式分解和整式的乘法是互为逆运算是解本题的关键9、
8、B【解析】【分析】直接利用积的乘方运算法则将原式变形求出答案【详解】解:3故选:B【考点】此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键10、B【解析】【详解】解:原式 故选B.二、填空题1、【解析】【分析】先提公因数5,然后根据平方差公式因式分解即可【详解】解:5x25y2故答案为:【考点】本题考查了分解因式,掌握平方差公式是解题的关键2、【解析】【分析】分子,分母同乘以,利用平方差公式化简解题【详解】解:故答案为:【考点】本题考查分母有理化,涉及平方差公式,是重要考点,难度一般,掌握相关知识是解题关键3、【解析】【详解】根据三角形面积公式可得:6m4-3a2m3+a2
9、m223m2=4m2-2a2m+23a2,故答案为:4m2-2a2m+23a2.4、2【解析】【分析】将(a1)(b1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得【详解】(a1)(b1)= abab+1,当ab=a+b+1时,原式=abab+1=a+b+1ab+1=2,故答案为2【考点】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用5、【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式故答案为:【考点】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题1、(1)2a2+10a
10、b+8b2;(2)【解析】【分析】(1)把三条小路使花圃的面积变为一个矩形的面积,所以花圃的面积=(4a+2b-2a)(2a+4b-a),然后利用展开公式展开合并即可;(2)利用2S2-S1=7b2得到b=2a,则用a表示S1、S2,然后计算它们的比值【详解】解:(1)平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b-2a)(2a+4b-a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;(2)S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;2S2-S1=7b2,2(2a2+10ab+8b2)
11、-(8a2+20ab+8b2)=7b2,b2=4a2,b=2a,S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,【考点】本题考查了生活中的平移现象:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移通过平移把不规则的图形变为规则图形也考查了代数式2、,5【解析】【分析】原式去括号合并得到最简结果,再把a,b的值代入计算即可求出值【详解】解:当,时,原式【考点】此题考查了整式的混合运算-化简求值,熟练掌握单项式乘多项式法则、平方差公式、完全平方公式等是解本题的关键3、2a26a3,16【解析】【分析】原式利用平方差公式,以
12、及单项式乘以多项式法则计算,合并得到最简结果,把a的值代入计算即可求出值【详解】解:原式a23+a26a2a26a3,当a时,原式46316【考点】本题主要考查整式化简求值,准确计算是解题的关键4、【解析】【分析】先提公因式4,将(x+y)看成一个整体,利用完全平方公式分解因式即可【详解】解:原式【考点】本题考查了提公因式法和完全平方公式法分解因式,解答的关键是掌握完全平方公式的结构特征,公式中的a、b可以表示数、字母,也可以是整式5、(1)页;(2)475页【解析】【分析】(1)根据题意,可以用含的代数式表示出这本书的页数;(2)将代入(1)中的代数式,即可求得这本书的页数【详解】解:(1),即这本书有页;(2)当时,答:这本书有475页【考点】本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式