1、八年级数学上册第十二章全等三角形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm2、下列各组的两个图形
2、属于全等图形的是()ABCD3、如图,要使,直接利用三角形全等的判定方法是AAASBSASCASADSSS4、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D55、如图,在中,的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD6、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A7、如图,在ABC和DEF中,已知AB=DE
3、,BC=EF,根据(SAS)判定ABCDEF,还需的条件是()AA=DBB=ECC=FD以上三个均可以8、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D509、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D4210、如图,在ABC中,C90,O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且AB10cm,BC8cm,CA6cm,则点O到边AB的距离为()A2cmB3cmC4cmD5cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ADBC,连接AC,过点D作于E,过点B作于F(1)若
4、,则ADE为_(2)写出线段BF、EF、DE三者间的数量关系_2、如图是由4个相同的小正方形组成的网格图,其中1+2=_3、如图,已知BEDC,请添加一个条件,使得ABEACD:_4、要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CDCB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得EDCABC,所以EDAB因此测得ED的长就是AB的长判定EDCABC的理由是_5、如图,在ABC中,B47,三角形的外角DAC和ACF的平分线交于点E,则ABE_三、解答题(5小题,每小题10分,共计50分)1、如图,等腰三角形中,作于点,将线段绕着
5、点顺时针旋转角后得到线段,连接(1)求证:;(2)延长线段,交线段于点求的度数(用含有的式子表示) 2、如图,A,B,C,D依次在同一条直线上,BF与EC相交于点M求证:3、已知:如图,在ABC中,ABAC,在ADE中,ADAE,且BACDAE,连接BD,CE交于点F,连接AF(1)求证:ABDACE;(2)求证:FA平分BFE4、如图,是边长为1的等边三角形,点,分别在,上,且,求的周长5、如图,已知(1)请用尺规作图在内部找一点,使得点到、的距离相等,(不写作图步骤,保留作图痕迹);(2)若的周长为,面积为,求点到的距离-参考答案-一、单选题1、B【解析】【分析】延长AD至M使DM=AD,
6、连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键2、D【解析】【分析】根据全等图形的定义,逐一判断选项,即可【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等
7、图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键3、B【解析】【分析】根据平行线性质得出ABD=CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出ABDCDB,从而推出A=C,即可得出答案【详解】,在和中,故选B【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.4、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出
8、PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=S
9、FPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型5、A【解析
10、】【分析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键
11、6、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型7、B【解析】【分析】根据三角形全等的判定中的SAS,即两边夹角已知两条边相等,只需要它们的夹角相等即可【详解】要使两三角形全等,已知AB=DE,BC=EF,要用SAS判断,还差夹角,即B=E故选:B【考点】本题考查了三角形全等的判定方法三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主8、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的
12、夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边9、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键10、A【解析】【分析】根据角平分线的性质得到OEOF
13、OD,设OEx,然后利用三角形面积公式得到SABCSOAB+SOAC+SOCB,于是可得到关于x的方程,从而可得到OF的长度【详解】解:点O为ABC的三条角平分线的交点,OEOFOD,设OEx,SABCSOAB+SOAC+SOCB, 5x+3x+4x24,x2,点O到AB的距离等于2故选:A【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键二、填空题1、 30 【解析】【分析】(1)根据直角三角形两锐角互余进行倒角即可求解;(2)根据ASA证明,即可求解【详解】解:(1),且ADBC,;故答案为:30;(2)在和中,故答案为:【考点】本题考查直角三
14、角形两锐角互余、全等三角形的判定与性质等内容,根据已知条件进行倒角是解题的关键2、180或180度【解析】【分析】由全等三角形性质和邻补角定义可求得【详解】解:如图:根据题意得BC=DE,E=B=90,AB=AE,所以ABCAED,所以1=ACB又因为2+ACB=180,所以,2+1=180故答案为:180【考点】本题考核知识点全等三角形性质和邻补角定义3、BC【解析】【分析】根据全等三角形的判定方法解答即可【详解】解:BEDC,AA,根据AAS,可以添加BC,使得ABEACD,故答案为:BC【考点】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型4、ASA
15、【解析】【分析】由已知可以得到ABC=BDE=90,又CD=BC,ACB=DCE,由此根据角边角即可判定EDCABC【详解】BFAB,DEBDABC=BDE又CD=BC,ACB=DCEEDCABC(ASA)故答案为ASA【考点】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找到隐含条件并熟练掌握全等三角形的判定定理是解题关键.5、23.5或【解析】【分析】首先作EMBD、ENBF、EOAC垂足分别为M、N、O,再利用角平分线的性质得出BE为ABC的角平分线,即可求解【详解】解:作EMBD、ENBF、EOAC垂足分别为M、N、O,如图所示,AE、C
16、E是DAC和ACF的平分线,EMEO,EOEN,EMEN,BE是ABC的角平分线,ABEABC23.5故答案为:23.5【考点】此题考查角平分线的性质:在角的内部,到角的两边距离相等的点在角的平分线上,反之也是成立的解题关键是利用角平分线的判定定理三、解答题1、(1)见解析;(2)【解析】【分析】(1)根据“边角边”证,得到即可;(2)由(1)得,再根据三角形内角和证明即可【详解】证明: 线段绕点顺时针旋转角得到线段,在与中,(2)解: , ,又,【考点】本题考查了旋转的性质、全等三角形的判定与性质和三角形内角和定理,解题关键是熟练运用全等三角形的判定与性质进行证明2、见解析【解析】【分析】由
17、AB=CD,得AC=BD,再利用SAS证明AECDFB,即可得结论【详解】证明:,在和中,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键3、 (1)见解析(2)见解析【解析】【分析】(1)根据SAS证明结论即可;(2)作AMBD于M,作ANCE于N由(1)可得BDCE,SBADSCAE,然后根据角平分线的性质即可解决问题(1)证明:BACDAE,BAC+CADDAE+CAD,即BADCAE,在BAD和CAE中,BADCAE(SAS);(2)证明:如图,作AMBD于M,作ANCE于N 由BADCAE,BDCE,SBADSCAE,AMAN,点A在BFE平分
18、线上,FA平分BFE【考点】本题考查全等三角形的判定和性质、三角形的面积,解题的关键是熟练掌握全等三角形的判定和性质,学会转化的思想,巧用等积法进行证明4、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接是等边三角形,在和中,在和中,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.5、 (1)见解析(2)【解析】【分析】(1)根据题意作的角平分线的交点,即为所求;(2)根据(1)的结论,设点到的距离为,则,解方程求解即可(1)如图,点即为所求,(2)设点到的距离为,由(1)可知点到、的距离相等则解得:点到的距离为【考点】本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键