收藏 分享(赏)

2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx

上传人:a**** 文档编号:696780 上传时间:2025-12-13 格式:DOCX 页数:26 大小:665.68KB
下载 相关 举报
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第1页
第1页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第2页
第2页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第3页
第3页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第4页
第4页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第5页
第5页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第6页
第6页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第7页
第7页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第8页
第8页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第9页
第9页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第10页
第10页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第11页
第11页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第12页
第12页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第13页
第13页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第14页
第14页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第15页
第15页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第16页
第16页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第17页
第17页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第18页
第18页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第19页
第19页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第20页
第20页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第21页
第21页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第22页
第22页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第23页
第23页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第24页
第24页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第25页
第25页 / 共26页
2022年人教版八年级数学上册第十二章全等三角形综合练习试题(详解).docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm2、如图,在ABC和D

2、EF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE3、如图,在中,观察图中尺规作图的痕迹,可知的度数为()ABCD4、如图,已知,则图中全等三角形的总对数是A3B4C5D65、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D16、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A7、下列关于全等三角形的说法不正确的是A全等三角形的大小相等B两个等边三角形一定是全等三角形C全等三角形的形状相同D全等三角形的对应边相等8、已知AOB60,以O为圆心,以任意长为半径作弧

3、,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,以OP为边作POC15,则BOC的度数为()A15B45C15或30D15或459、已知图中的两个三角形全等,AD与CE是对应边,则A的对应角是( )ABCD10、下列语句中正确的是()A斜边和一锐角对应相等的两个直角三角形全等B有两边对应相等的两个直角三角形全等C有两个角对应相等的两个直角三角形全等D有一直角边和一锐角对应相等的两个直角三角形全等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使A

4、BDABC,则还需添加的一个条件是_(只填一个即可)2、如图所示,在中,B=90,AD平分BAC,交BC于点D,DEAC,垂足为点E,若BD=3,则DE的长为 _3、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90,且CMDM已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是_秒4、如图,在和中,直线交于点M,连接以下结论:;平分其中正确的是_(填序号)5、如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则BAD+ADC=_三、解答题(5小题,每小题10分,共计50分)1、小

5、明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则ACB与ADB有怎样的关系?(1)请你帮他们解答,并说明理由(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论请你帮他画出图形,并证明结论2、在中,点D是直线BC上一点(点D不与点B,C重合),以AD为一边在AD的右侧作,使,连接CE(1)如图(1),若点D在线段BC上,和之间有怎样的数量关系?(不必说明理由)(2)若,当点D在射线BC上移动时,如图(2),和之间

6、有怎样的数量关系?说明理由3、正方形ABCD中,E为BC上的一点,F为CD上的一点,求的度数4、如图,G 为 BC 的中点,且 DGBC,DEAB 于 E,DFAC 于 F, BECF(1)求证:AD 是BAC 的平分线;(2)如果 AB8,AC6,求 AE 的长5、如图,在ABC中,AD平分BAC,C=90,DEAB于点E,点F在AC上,BD=DF(1)求证:CF=EB;(2)若AB=14,AF=8,求CF的长-参考答案-一、单选题1、B【解析】【分析】延长AD至M使DM=AD,连接CM,根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延

7、长AD至M使DM=AD,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键2、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选

8、:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点3、C【解析】【分析】利用等腰三角形的性质和基本作图得到,则平分,利用和三角形内角和计算出,从而得到的度数.【详解】由作法得,平分,故选C【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.4、D【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA

9、=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边

10、对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边5、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.6、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本

11、知识,属于中考常考题型7、B【解析】【分析】根据全等三角形的定义与性质即可求解【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误故选B【考点】本题考查了全等三角形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等8、D【解析】【分析】根据题意作图,可得出OP为AOB的角平分线,有,以OP为边作POC15,则BOC的

12、度数有两种情况,依据所作图形即可得解.【详解】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在AOB内交于点P,则OP为AOB的平分线,(2)两弧在AOB内交于点P,以OP为边作POC15,则BOC15或45,故选:D【考点】本题考查的知识点是根据题意作图并求解,依据题意作出正确的图形是解题的关键.9、A【解析】【分析】观察图形,AD与CE是对应边,根据对应边去找对应角【详解】观察图形知,AD与CE是对应边B与ACD是对应角又D与E是对应角A与BCE是对应角故选:A【考点】本题考查了全等三角形的性质,正确的识别图形是解题

13、的关键10、A【解析】【分析】根据全等三角形的判定定理,用排除法以每一个选项进行分析从而确定最终答案【详解】A、正确,利用AAS来判定全等;B、不正确,两边的位置不确定,不一定全等;C、不正确,两个三角形不一定全等;D、不正确,有一直角边和一锐角对应相等不一定能推出两直角三角形全等,没有相关判定方法对应故选A【考点】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形的相关判定.二、填空题1、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根

14、据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件2、3【解析】【分析】根据角平分线的性质,即角平分线上任意一点到角两边的距离相等计算即可;【详解】在中,B=90,AD平分BAC,DEAC,;故答案是3【考点】本题主要考查了角平分线的性质应用,准确计算是解题的关键3、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程速度列式计算即可【详解】解:根据题意可得:,又在和

15、中时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键4、【解析】【分析】由SAS证明AOCBOD得出OAC=OBD,AC=BD,正确; 由全等三角形的性质得出OAC=OBD,由三角形的外角性质得:AMB+OBD=OAC+AOB,得出AMB=AOB=,可得正确; 作OGAM于G,OHDM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得AMO=DMO,假设OM平分BOC,则可求出AOM=DOM,由全等三角形的判定定理可得AMODMO,得AO=OD,而OC=OD,所以OA=OC,而OAOC,故错误;即可得出结论【详解】

16、解:AOB=COD=, AOB+BOC=COD+BOC, 即AOC=BOD, 在AOC和BOD中, AOCBOD(SAS), OAC=OBD,AC=BD, 故正确; 由三角形的内角和定理得: AMB+OBD=OAC+AOB, OAC=OBD, AMB=AOB=, ,故正确; 作OGAM于G,OHDM于H,如图所示, AOCBOD, 结合全等三角形的对应高可得:OG=OH, MO平分AMD, AMO=DMO, 假设OM平分BOC,则BOM=COM, AOB=COD, AOB+BOM=COD+COM, 即AOM=DOM, 在AMO与DMO中, , AMODMO(ASA), OA=OD, OC=OD

17、, OA=OC, 而OAOC,故错误; 正确的个数有3个; 故答案为:【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键5、或度【解析】【分析】证明DCEABD(SAS),得CDE=DAB,根据同角的余角相等和三角形的内角和可得结论【详解】解:如图,设AB与CD相交于点F,在DCE和ABD中,DCEABD(SAS),CDE=DAB,CDE+ADC=ADC+DAB=90,AFD=90,BAC+ACD=90,故答案为:90度【考点】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关

18、系,本题构建全等三角形是关键三、解答题1、(1),理由见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据全等三角形的判定定理证得;(2)由(1)中的全等三角形的对应角相等证得,则由全等三角形的判定定理证得,则对应边;(3)同(2),利用全等三角形的对应边相等证得结论【详解】解:(1),理由如下:如图1,在与中,;(2)如图2,由(1)知,则在与中,;(3)如图3,理由同(2),则【考点】本题考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形2、(1);(2),理由见解析【解析】【分析】(1)根据题意证明,根据三角形的内

19、角和即可求解;(2)设AD与CE交于F点,根据题意证明,根据平角的性质即可求解【详解】(1)理由如下:,=;(2)理由如下:设AD与CE交于F点,【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理3、45【解析】【分析】延长EB使得BG=DF,易证ABGADF(SAS)可得AF=AG,进而求证AEGAEF可得EAG=EAF,再求出EAG+EAF=90即可解题【详解】解:如图,延长EB到点G,使得,连接AG在正方形ABCD中,在和中,又,在和中,【考点】本题考查了正方形的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解决此题的关键4、(1)见解析;(2)

20、7.【解析】【分析】(1)因为G为BC的中点,且DGBC,则DG是线段BC的垂直平分线,考虑连接DB、DC,利用线段的垂直平分线的性质,又因为DEAB,DFAC,可通过DE=DF说明AD是BAC的平分线;(2)先通过AED与ADF的全等关系,说明AE与AF的关系,利用线段的和差关系,通过线段的加减求出AE的长【详解】(1)连接BD、DC DGBC,G为BC的中点,BD=CD,DGBC,DEAB BED=CFD,在RtDBE和RtDFC中, DBEDFC DE=DF,BAD=FAD AD是BAC的平分线;(2)DE=DF,BAD=FAD,AD=AD AEDADF,AE=AF AB=AE+BE,A

21、C=AF-CF,AB+AC=AE+AF,AB=8,AC=6,8+6=2AE,AE=7【考点】本题考查了全等三角形的判定与性质、角平分线与线段垂直平分线的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及角平分线与线段垂直平分线的性质.5、 (1)见详解(2)3【解析】【分析】(1)利用角平分线的性质可得,再利用“HL”证明,再利用全等三角形的性质求解;(2)利用“HL“证明,可得,设,则 ,即可建立方程求解(1)证明:于点E,又AD平分, ,在和中, ,;(2)解:在和中, ,设,则,解得 ,故【考点】本题考查了直角三角形全等的判定与性质,角平分线的性质,在图形中找到正确的全等三角形以及熟悉直角三角形全等的性质与判定是关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1