收藏 分享(赏)

2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx

上传人:a**** 文档编号:696768 上传时间:2025-12-13 格式:DOCX 页数:27 大小:497.55KB
下载 相关 举报
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第1页
第1页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第2页
第2页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第3页
第3页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第4页
第4页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第5页
第5页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第6页
第6页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第7页
第7页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第8页
第8页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第9页
第9页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第10页
第10页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第11页
第11页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第12页
第12页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第13页
第13页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第14页
第14页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第15页
第15页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第16页
第16页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第17页
第17页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第18页
第18页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第19页
第19页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第20页
第20页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第21页
第21页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第22页
第22页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第23页
第23页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第24页
第24页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第25页
第25页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第26页
第26页 / 共27页
2022年人教版八年级数学上册第十二章全等三角形必考点解析试题(含解析).docx_第27页
第27页 / 共27页
亲,该文档总共27页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组的两个图形属于全等图形的是()ABCD2、如图,若,则下列结论中不一定成立的是()ABCD3、如图,在AB

2、C和ABC中,ABCABC,AABC,则,满足关系()ABCD4、如图,已知,添加以下条件,不能判定的是()ABCD5、如图,已知ABCDCB添加一个条件后,可得ABCDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA6、如图,在梯形中,那么下列结论不正确的是( )ABCD7、已知:如图,12,则不一定能使ABDACD的条件是 ( )AABACBBDCDCBCDBDACDA8、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D19、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及

3、一边对角10、如图,已知能直接判断的方法是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知AC与BF相交于点E,ABCF,点E为BF中点,若CF8,AD5,则BD_2、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)3、如图,在ABC中,AC8cm,BC10cm点C在直线l上,动点P从A点出发沿AC的路径向终点C运动;动点Q从B点出发沿BCA路径向终点A运动点P和点Q分别以每秒1cm和2cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,分别过点P和Q作PM直

4、线l于M,QN直线l于N则点P运动时间为_秒时,PMC与QNC全等4、如图,在x、y轴上分别截取OA、OB,使OAOB,再分别以点A、B为圆心,以大于AB的长度为半径画弧,两弧交于点C若C的坐标为(3a,a8),则a_5、如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则BAD+ADC=_三、解答题(5小题,每小题10分,共计50分)1、如图,已知和中,线段分别交,于点,(1)请说明的理由;(2)可以经过图形的变换得到,请你描述这个变换;(3)求的度数2、已知RtABC中,BAC=90,AB=AC,点E为ABC内一点,连接AE,CE,CEAE,过点B作BDAE,交AE的延长线于D(1

5、)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DGFH,交FH的延长线于点G,若GH:FH=6:5,FHM的面积为30,EHB=BHG,求线段EH的长3、如图,A=D=90,AC=DB,AC、DB相交于点O求证:OB=OC4、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_5、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD

6、=2AE.-参考答案-一、单选题1、D【解析】【分析】根据全等图形的定义,逐一判断选项,即可【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键2、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-A

7、BD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质3、C【解析】【分析】根据,证得,=,再利用BC得到=,再根据三角形内角和定理即可得到结论.【详解】,,ACB=,=,BC,=,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.4、D【解析】【分析】全等三角形的判定有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可【详解】解:在ABC和CDA中,AC=CA;A添加2=3,可用ASA判定;B添加B=D,

8、可用AAS判定;C添加BC=DA,可用SAS判定;D添加AB=DC,是SSA不能判定故选:D【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS5、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCDCB,不符合题意;C、添加AD,利用AAS可得ABCDCB,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCD

9、CB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键6、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出ADB=90,从而得出B正确;C、由梯形的性质得出ABCD,结合角的计算即可得出ABC=60,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出DAC=CAB,即D正确综上即可得出结论【详解】A、AD=DC,ACAD+DC=2CD,故A不正确;B、四边形ABCD是等腰梯形,ABC=BAD,在ABC和BAD中,ABCBAD(SAS),BAC=ABD,ABCD,CDB=ABD,ABC

10、+DCB=180,DC=CB,CDB=CBD=ABD=BAC,ACB=90,CDB=CBD=ABD=30,ABC=ABD+CBD=60,B正确,C、ABCD,DCA=CAB,AD=DC,DAC=DCA=CAB,C正确D、DABCBA,ADB=BCAACBC,ADB=BCA=90,DBAD,D正确;故选:A【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可7、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可

11、得出答案【详解】解:A、1=2,AD为公共边,若AB=AC,则ABDACD(SAS);故A不符合题意;B、1=2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定ABDACD;故B符合题意;C、1=2,AD为公共边,若B=C,则ABDACD(AAS);故C不符合题意;D、1=2,AD为公共边,若BDA=CDA,则ABDACD(ASA);故D不符合题意故选B8、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,

12、正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.9、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.10、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.二、填空题1、3【解

13、析】【分析】利用全等三角形的判定定理和性质定理可得结果【详解】解:ABCF,A=FCE,B=F,点E为BF中点,BE=FE,在ABE与CFE中,ABECFE(AAS),AB=CF=8,AD=5,BD=3,故答案为:3【考点】本题主要考查了全等三角形的判定定理和性质定理,熟练掌握定理是解答此题的关键2、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD,此时利用边角边判定:或可以添加: 此时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,

14、掌握三角形全等的判定是解题的关键3、2或6或6或2【解析】【分析】设点P运动时间为t秒,根据题意化成两种情况,由全等三角形的性质得出,列出关于t的方程,求解即可【详解】解:设运动时间为t秒时,PMCCNQ,斜边,分两种情况:如图1,点P在AC上,点Q在BC上,图1,;如图2,点P、Q都在AC上,此时点P、Q重合,图2,;综上所述,点P运动时间为2或6秒时,PMC与QNC全等,故答案为:2或6【考点】本题考查了全等三角形的性质和判定的应用,根据题意判断两三角形全等的条件是解题关键,同时要注意分情况讨论,解题时避免遗漏答案4、2【解析】【分析】根据尺规作图可知,点C在AOB角平分线上,所以C点的横

15、坐标和纵坐标相等,即可以求出a的值【详解】解:根据题目尺规作图可知,交点C是AOB角平分线上的一点,点C在第一象限,点C的横坐标和纵坐标都是正数且横坐标等于纵坐标,即3a=-a+8,得a=2,故答案为:2【考点】本题考查了角平分线尺规作图,角平分线的性质,以及平面直角坐标系的知识,结合直角坐标系的知识列方程求解是解答本题的关键5、或度【解析】【分析】证明DCEABD(SAS),得CDE=DAB,根据同角的余角相等和三角形的内角和可得结论【详解】解:如图,设AB与CD相交于点F,在DCE和ABD中,DCEABD(SAS),CDE=DAB,CDE+ADC=ADC+DAB=90,AFD=90,BAC

16、+ACD=90,故答案为:90度【考点】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键三、解答题1、(1)见解析;(2)通过观察可知绕点顺时针旋转,可以得到;(3)【解析】【分析】(1)先利用已知条件B=E,AB=AE,BC=EF,利用SAS可证ABCAEF,那么就有C=F,BAC=EAF,那么BAC-PAF=EAF-PAF,即有BAE=CAF=25;(2)通过观察可知ABC绕点A顺时针旋转25,可以得到AEF;(3)由(1)知C=F=57,BAE=CAF=25,而AMB是ACM的外角,根据三角形外角的性质可求AMB【详解】解:(1),;(2)通过

17、观察可知绕点顺时针旋转,可以得到;(3)由(1)知,【考点】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等2、(1)见解析;(2)EDH45;(3)EH10【解析】【分析】(1)根据全等三角形的判定得出CAEABD,进而利用全等三角形的性质得出AEBD即可;(2)根据全等三角形的判定得出AEHBDH,进而利用全等三角形的性质解答即可;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,根据全等三角形判定和性质解答即可【详解】证明:(1)CEAE,BDAE,AECADB90,BAC90,ACE+CAECAE+BAD90,ACEBAD,在CAE

18、与ABD中CAEABD(AAS),AEBD;(2)连接AHABAC,BHCH,BAH,AHB90,ABHBAH45,AHBH,EAHBAHBAD45BAD,DBH180ADBBADABH45BAD,EAHDBH,在AEH与BDH中AEHBDH(SAS),EHDH,AHEBHD,AHE+EHBBHD+EHB90即EHD90,EDHDEH;(3)过点M作MSFH于点S,过点E作ERFH,交HF的延长线于点R,过点E作ETBC,交HR的延长线于点TDGFH,ERFH,DGHERH90,HDG+DHG90DHE90,EHR+DHG90,HDGHER在DHG与HER中 DHGHER (AAS),HGER

19、,ETBC,ETFBHG,EHBHET,ETFFHM,EHBBHG,HETETF,HEHT,在EFT与MFH中,EFTMFH(AAS),HFFT,ERMS,HGERMS,设GH6k,FH5k,则HGERMS6k,k,FH5,HEHT2HF10【考点】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题3、证明见解析.【解析】【分析】因为A=D=90,AC=BD,BC=BC,知RtBACRtCDB(HL),所以ACB=DBC,故OB=OC【详解】证明:在RtABC和RtDCB中 ,RtABCRtDCB(HL),OBC=OCB,B

20、O=CO【考点】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具4、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证明ADECDF;(2)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,ADE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应

21、边相等的性质,本题中求证ADECDF是解题的关键5、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1