收藏 分享(赏)

2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx

上传人:a**** 文档编号:696650 上传时间:2025-12-13 格式:DOCX 页数:25 大小:586.53KB
下载 相关 举报
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第1页
第1页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第2页
第2页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第3页
第3页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第4页
第4页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第5页
第5页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第6页
第6页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第7页
第7页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第8页
第8页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第9页
第9页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第10页
第10页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第11页
第11页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第12页
第12页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第13页
第13页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第14页
第14页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第15页
第15页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第16页
第16页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第17页
第17页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第18页
第18页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第19页
第19页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第20页
第20页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第21页
第21页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第22页
第22页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第23页
第23页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第24页
第24页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形专题测评试题(详解版).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角

2、等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线2、如图,ABC中,已知B=C,点E,F,P分别是AB,AC,BC上的点,且BE=CP,BP=CF,若A=112,则EPF的度数是()A34B36C38D403、如图,ABC与DEF是全等三角形,则图中的相

3、等线段有()A1B2C3D44、如图,在OAB和OCD中,OA=OB,OC=OD,OAOC,AOB=COD=40,连接AC,BD交于点M,连接OM,下列结论:AOCBOD;AC=BD;AMB=40;MO平分BMC其中正确的个数为()A4B3C2D15、如图,已知,用尺规作它的角平分线如图,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求下列叙述不正确的是()AB作图的原理是构造三角形全等C由第二步可知,D的长6、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,

4、则B的度数为()A15B55C65D757、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA8、如图,已知,则的长为()A7B3.5C3D29、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD10、如图,已知,则图中全等三角形的总对数

5、是A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形中,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动,设运动时间为,当与以,为顶点的三角形全等时,点的运动速度为_2、如图,若ABCADE,且135,则2_3、如图,在ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,则BF=_4、如图,是的角平分线,于, 的面积是,则_5、如图,点B,E,C,F在一条直线上,ABDF,ABDF,若ABCDFE,则需添加的条件是_(填一个即可)三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC和ADE中,AB=AD,

6、B=D,1=2求证:BC=DE2、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线3、已知:如图,AB=DE,ABDE,BE=CF,且点B、E、C、F都在一条直线上,求证:ACDF4、如图,在四边形ABCD中,AB=AD,AC平分BCD,AEBC于E,AFCD交CD的延长线于F(1)求证:ABEADF;(2)若BC=8cm,DF=3cm,求CD的长5、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点-参考答案-一、单选题1、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解】解

7、:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断2、A【解析】【分析】由三角形内角和定理可得B=C=34,由EBPPCF可得EPB=PFC,再由三角形外角的性质便可解答;【详解】解:BAC中,B=C,A=112,则B=C=34,EBP和PCF中:BE=CP,EBP=PCF,BP=CF,EBPPCF(SAS),EPB=PFC,BPF=EPB+EPF=C+PFC,EPF=C=34,故

8、选:A【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握全等三角形的判定定理和性质是解题关键3、D【解析】【分析】全等三角形的对应边相等,据此可得出AB=DE,AC=DF,BC=EF;再根据BC-EC=EF-EC,可得出一组线段相等,据此找出组数,问题可解.【详解】ABCDEF,AB=DE,AC=DF,BC=EF,BC-EC=EF-EC,即BE=CF.故共有四组相等线段.故选D.【考点】本题主要考查全等三角形的性质,全等三角形的对应边相等.4、A【解析】【分析】由题意易得AOC=BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解【详解】解:AOB=C

9、OD=40,AOD是公共角,COD+AOD=BOA+AOD,即AOC=BOD,OA=OB,OC=OD,AOCBOD(SAS),AC=BD,OAC=OBD,ODB=OCA,故正确;过点O作OEAC于点E,OFBD于点F,BD与OA相交于点H,如图所示:AHM=OHB,AMB=180-AHM-OAC,BOA=180-OHB-OBD,AMB=BOA=40,OEC=OFD=90,OC=OD,OCA=ODB,OECOFD(AAS),OE=OF,OM平分BMC,故正确;所以正确的个数有4个;故选A【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定

10、定理是解题的关键5、D【解析】【分析】根据用尺规作图法画已知角的角平分线的基本步骤判断即可【详解】解:A、以a为半径画弧,故正确B、根据作图步骤可知BD=BE,PD=PE,BP=BP,BDPBEP(SSS),故正确C、分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键6、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=16

11、5,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键7、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键8、C【解析】【分析】利用全等三角形的性质求解即可【详解】解:ABCDAE,AC=DE=5,AE=BC=2,CE=AC-AE=3,故选C【考点】本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的

12、关键9、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键10、D【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DAC=BCA,CDB=ABD,DCA=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,

13、ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的

14、另一组对应邻边二、填空题1、1或【解析】【分析】设点的运动速度为,由题意可得,与以,为顶点的三角形全等时分为两种情况:,再利用全等三角形的性质求解即可【详解】解:设点的运动速度为,由题意可得,与以,为顶点的三角形全等时可分为两种情况:当时,此时点的运动速度为;当时,此时点的运动速度为,故答案为:1或【考点】本题主要考查三角形全等的性质,掌握全等三角形的对应边相等是解题的关键,注意分情况讨论2、35【解析】【分析】根据全等的性质可得:EADCAB,再根据等式的基本性质可得1235.【详解】解:ABCADE,EADCAB,EADCADCABCAD,2135故答案为35【考点】此题考查的是全等三角形

15、的性质,掌握全等三角形的对应角相等是解决此题的关键.3、或【解析】【分析】延长AD至G,使DGAD,连接BG,可证明,则BGAC,根据AEEF,得到,可证出,即得出ACBF,从而得出BF的长【详解】解:如图,延长AD至G,使DGAD,连接BG,在和中,BGAC,又AEEF,又,BGBF,ACBF,又BE7CE,AE,BFEF,即BF,解得BF故答案为:【考点】本题考查了全等三角形的判定和性质,证明线段相等,一般转化为证明三角形全等,正确地作出辅助线构造全等三角形是解题的关键4、2cm【解析】【分析】过点D作,垂足为点F,根据BD是ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其

16、底边长之比,得BDC与BDA的面积之比,再求出BDA的面积,进而求出DE【详解】解:如图,过点D作,垂足为点F,BD是ABC的角平分线,DE=DF,的面积是,即,DE=2cm故答案为:2cm【考点】本题考查了三角形的问题,掌握角平分线的性质、等高的三角形的面积之比等于其底边长之比是解题的关键5、AD 或ACBDEF或ACDE或BCFE或BEFC【解析】【分析】先根据已知条件推得BF,加上ABDF,要证ABCDFE,只需要根据全等三角形的判定方法添加适当的角和边即可【详解】解:ABDF,添加AD,在和中 ,;添加ACBDEF,在和中 ,;添加ACDE,ACDE,ACBDEF,在和中 ,;添加BC

17、FE,在和中 ,;添加BEFC,BEFC,在和中 ,综上可得,添加AD 或ACBDEF或ACDE或BCFE或BEFC都可得到ABCDFE故答案为:AD 或ACBDEF或ACDE或BCFE或BEFC【考点】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角三、解答题1、证明见解析.【解析】【分析】根据ASA证明ADEABC即可得到答案;【详解】证明:1=2,DAC+1=2+DACBAC=DAE,在ABC和ADE中,ADEABC(ASA)BC=DE,【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“

18、ASA”、“AAS”;全等三角形的对应边相等2、见解析【解析】【分析】观察第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可【详解】解:如图所示,第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿ABCD分割;第二个图同理沿EFGHPQ分割即可将分割出的两个图形,逆时针旋转90度,再通过平移,两部分能够完全重合,所以分割出的两部分完全相同【考点】本题考查图形全等,掌握全等图形的定义是解题的关键3、详见解析【解析】【分析】首先利用平行线的性质B=DEF,再利用SAS

19、得出ABCDEF,得出ACB=F,根据平行线的判定即可得到结论【详解】证明:ABDE,B=DEC,又BE=CF,BC=EF,在ABC和DEF中,ABCDEF(SAS),ACB=F,ACDF【考点】本题考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键4、 (1)证明见解析(2)2cm【解析】【分析】(1)由角平分线的性质可知,证明,进而结论得证;(2)由,可得,证明,则,根据,计算求解即可(1)证明:AC平分BCD,AEBC,AFCD,在和中,(2)解:,在和中,的长为2cm【考点】本题考查了角平分线的性质,全等三角形的判定与性质等知识解题的关键在于找出三角形全等的条件5、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1