1、人教版八年级数学上册第十三章轴对称综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若是等边三角形,是的平分线,延长到,使,则()A7B8C9D102、下列标志图形属于轴对称图形的是()ABC
2、D3、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:ACEBCD;DABACE;AE+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个4、如图,A30,C60,ABC 与ABC关于直线l对称,则B度数为()ABCD5、如图所示,已知ABC(ACABBC),用尺规在线段BC上确定一点P,使得PA+PCBC,则符合要求的作图痕迹是()ABCD6、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D807、如图,若,则下列结论中不一定成立的是()ABCD8、等腰三角形一腰上
3、的高与另一腰的夹角为,则顶角的度数为()ABC或D或9、等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A或或B或C或D或10、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABCADE,且点B与点D对应,点C与点E对应,点D在BC上,BAE=114,BAD=40,则E的度数是_2、如图,在中,以点为圆心,以小于的长为半径作弧,分别交于点,交于点,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点
4、,连接,则_3、如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处若,则为_4、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm25、如图,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角坐标系中,的三个顶点坐标分别为,请回答下列问题:(1)作出关于轴的对称图形,并直接写出的顶点坐标;(2)的面积为 2、如图,在中,(1)在线段上找到一个点,使得(尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求证:是等边三角形3、如图,在中,,;点在上
5、,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由4、如图,在正方形网格上的一个ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上)(1)作ABC关于直线MN的轴对称图形ABC;(2)在MN上画出点P,使得PA+PC最小;(3)求出ABC的面积5、在直角坐标平面内,已知点A的坐标(1,4),点B的位置如图所示,点C是第一象限内一点,且点C到x轴的距离是2,到y轴的距离是4(1)写出图中点B的坐标;(2)在图中描出点C,并写出图中点C的坐标:;(3)画出ABO关于y轴的对称图形ABO;(4)联结AB、BB、BC、AC那么四边形ABBC的面积等于-参考答案
6、-一、单选题1、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=,另有 ,从而求出BE的长度【详解】解:由于ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3而BE=BC+CE,因此BE=6+3=9故答案选C【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一2、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意故选:B【考点】本
7、题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合3、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角性质得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACEBCD,在ACE和BCD中,ACEBCD(SAS),所以
8、正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确故选:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键4、C【解析】【分析】由已知条件,根据轴对称的性质可得CC30,利用三角形的内角和等于180可求答案【详解】ABC与ABC关于直线l对称,AA30,CC60;B18030-6090故选
9、:C【考点】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是1805、C【解析】【分析】根据线段垂直平分线的性质可得,作AB的垂直平分线,交BC于点P,则PB+PC=BC,进而可以判断【详解】解:作AB垂直平分线交BC于点P,连接PA,则PA=PB,所以PA+PC=PB+PC=BC所以符合要求的作图痕迹是C故选:C【考点】本题考查了作图-复杂作图,解决本题的关键是掌握线段垂直平分线的性质6、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,
10、DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键7、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质8、D
11、【解析】【分析】分等腰三角形为锐角三角形和钝角三角形两种情况,然后分别根据直角三角形两锐角互余即可得【详解】依题意,分以下两种情况:(1)如图1,等腰为锐角三角形,顶角为,(2)如图2,等腰为钝角三角形,顶角为,综上,顶角的度数为或故选:D【考点】本题考查了等腰三角形的定义、直角三角形两锐角互余等知识点,依据题意,正确分两种情况讨论是解题关键9、A【解析】【分析】设另一个角是x,表示出一个角是2x-20,然后分x是顶角,2x-20是底角,x是底角,2x-20是顶角,x与2x-20都是底角根据三角形的内角和等于180与等腰三角形两底角相等列出方程求解即可【详解】设另一个角是x,表示出一个角是2x
12、20,x是顶角,2x20是底角时,x+2(2x20)180,解得x44,所以,顶角是44;x是底角,2x20是顶角时,2x+(2x20)180,解得x50,所以,顶角是2502080;x与2x20都是底角时,x2x20,解得x20,所以,顶角是180202140;综上所述,这个等腰三角形的顶角度数是44或80或140故选:A【考点】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错10、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称
13、图形【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、36【解析】【分析】根据全等三角形的性质得出AB=AD,ABD=ADE,根据等腰三角形的性质和三角形内角和定理求出ABD=70,求出DAE和ADE,再根据三角形内角和定理求出E即可【详解】解:ABCADE,AB=AD,ABD=ADB,BAD=40,ABD=ADB=(
14、180-BAD)=70,ABCADE,ADE=ABD=70,BAE=114,BAD=40,DAE=BAE-BAD=114-40=74,E=180-ADE-DAE=180-70-74=36,故答案为:36【考点】本题考查了全等三角形的性质,等腰三角形的性质,三角形内角和定理等知识点,能熟记全等三角形的对应边相等和全等三角形的对应角相等是解此题的关键2、【解析】【分析】利用基本作图得到AG平分BAC,则可计算出BAG=CAG=B=30,所以AG=BG;根据直角形三角形30角所对直角边是斜边的一半,知AG=2CG,则BG=BC,然后根据三角形面积与(底)高的关系计算的值【详解】解:由作法得,AG平分
15、BACBAG=CAG=30B=90BAC=30B=BAGAG=BG在RtACG中,AG=2CGBG=2CGBG=BC=故答案为:【考点】本题考查了作图复杂作图,角平分线的性质,等腰三角形的性质,含30角的直角三角形三边的关系及三角形面积与底(高)的关系解题的关键是熟悉基本几何图形的性质3、105【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB=BDG=DBG,由三角形的外角性质求出BDG=DBG=1=25,再由三角形内角和定理求出A,即可得到结果【详解】ADBC,ADB=DBG,由折叠可得ADB=BDG,DBG=BDG,又1=BDG+DBG=50,ADB=BDG=25,又2=50,A
16、BD中,A=105,A=A=105,故答案为105【考点】本题考查了平行四边形的性质,折叠的性质,三角形的外角性质,三角形内角和定理4、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键5、100【解析】【分析】先根据EC=EACAE=40得出C=40,再由三角形外角的性质得出AED的度数,利用平行线的性质即可得出结论【详解】EC=EA,CAE=4
17、0,C=CAE=40,DEA是ACE的外角,AED=C+CAE=40+40=80,ABCD,BAE+AED=180BAE =100【考点】本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键三、解答题1、(1)图见解析,;(2)【解析】【分析】(1)利用轴对称的性质即可画出,再根据坐标系中所画出的三角形即可写出其顶点坐标(2)如图利用割补法即可求出的面积【详解】(1)如图,即为所求,由图可知,(2)如图取E(1,-2),F(1,-5),G(4,-5),分别连接E、G、F,由图可知四边形EGF为正方形所以,即故答案为:【考点】本题考查利用轴对称作图,利用
18、轴对称的性质找出对称点的位置是解决问题的关键2、 (1)见解析;(2)见解析【解析】【分析】(1)作线段AC的垂直平分线即可;(2)根据线段垂直平分线的性质可得DADC,根据等边对等角可得CADC,进而可得ADBBDAB60,然后可得答案(1)解:如图所示:(2)BAC90,C30B60,又点D在AC的垂直平分线上,DADC,CADC30,DAB60,ADBBDAB60,即ABD是等边三角形【考点】此题主要考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等3、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用S
19、AS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键4、(1)见详解;(2)见详解;(3) 【解析】【分析】(1)根据题意,可以画出所求的ABC;(2)根据最短路线的作法,可以画出点P,使得PA+PC最小;(3)利用分割法求面积即可【详解】解:(1)如图,ABC即为所求;(2)如图,连接
20、AC,交MN于点P,则P即为所求;(3)【考点】本题考查作图-轴对称变换,三角形的面积,轴对称最短问题等知识,解题关键是熟练掌握基本知识,属于中考常考题型5、(1)(4,2),(2)描点见解析,(4,2)(3)画图见解析,(4)30【解析】【分析】(1)根据B的位置写出坐标即可;(2)描出点C,根据C的位置写出坐标即可;(3)作出A、B关于y轴的对称点A、B即可;(4)根据S四边形ABBCSABB+SCAB计算即可;【详解】解:(1)观察可知点B的坐标为:B(4,2);故答案为(4,2),(2)点C的位置如图所示,坐标为C(4,2),故答案为(4,2) (3)ABO如图所示,(4)S四边形ABBCSABB+SCAB43+ 8630故答案为30【考点】本题考查作图轴对称变换,四边形的面积等知识,解题的关键是熟练掌握轴对称的坐标变化规律,会用分割法求四边形面积