1、人教版八年级数学上册第十三章轴对称专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若,则下列结论中不一定成立的是()ABCD2、如图,已知AB=AC=BD,那么1与2之间的关系是( )A1=
2、22B21+2=180C1+32=180D31-2=1803、观察下列作图痕迹,所作CD为ABC的边AB上的中线是()ABCD4、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQPA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.55、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD6、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )A等腰直角三角
3、形B等腰三角形C直角三角形D等边三角形7、在平面直角坐标系中,点关于轴对称的点的坐标为()ABCD8、观察下列作图痕迹,所作线段为的角平分线的是()ABCD9、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )ABCD10、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A3个B4个C5个D无数个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已
4、知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_2、如图,点与点关于直线对称,则_3、如图,在ABC中,AB=AC,外角ACD=110,则A=_4、如图,在中,以点为圆心,以小于的长为半径作弧,分别交于点,交于点,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,连接,则_5、如图, 在ABC中, ACB的平分线交AB于点D,DEAC于点E, F为BC上一点,若DF=AD, ACD与CDF的面积分别为10和4, 则AED的面积为_三、解答题(5小题,每小题10分,共计50分)1、在学习矩形的
5、过程中,小明遇到了一个问题:在矩形中,是边上的一点,试说明的面积与矩形的面积之间的关系他的思路是:首先过点作的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)在和中,又,_,_又_同理可得_2、已知:如图,相交于点O,求证:(1);(2)3、如图,是等边三角形, 在直线上,求证: 4、已知:如图,为锐角,点A在射线上求作:射线,使得小静的作图思路如下:以点A为圆心,为半径作弧,交射线于点B,连接;作的角平分线射线即为所求的射线(1)使用直尺和圆规,按照小静的作图思路补全图形(
6、保留作图痕迹);(2)完成下面的证明证明:,(_)是的一个外角,_平分,(_)5、如图,已知ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数-参考答案-一、单选题1、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性
7、质2、D【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可得B=18021=C,根据三角形的外角性质可得C=12,进一步即得答案【详解】解:AB=AC=BD,BAD=1,B=C,B=18021=C,C=12,18021=12,312=180故选:D【考点】本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质等知识,属于基本题型,熟练掌握上述知识是解题的关键3、B【解析】【分析】根据题意,CD为ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB的中点,连接CD即可判断【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,点D即为线段AB的中点
8、,CD为ABC的边AB上的中线故选:B【考点】本题主要考查三角形一边的中线的作法;作该边的中垂线,找出该边的中点是解题关键4、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键5、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项B能找到这样的一条直线,使图形
9、沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得【详解】由方位角的定义得:由题意得:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A【考点】本题考查了方位角的定义、平行线的性质、
10、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键7、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键8、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平
11、分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点9、B【解析】【分析】结合轴对称图形的概念进行求解即可【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、C【解析】【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45,右下45方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两
12、个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45、向右下45平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【考点】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.二、填空题1、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在R
13、tDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键2、-5【解析】【分析】根据点与点关于直线对称求得a,b的值,最后代入求解即可【详解】解:点与点关于直线对称a=-2,,解得b=-3a+b=-2+(-3)=-5故答案为-5【考点】本题考查了关于y=-1对称点的性质,根据对称点的性质求得a、b的值是解答本题的关键3、40【解析】【分析】由ACD=110,可知ACB=70;由AB=AC,可知B=ACB=70;利用三角形外角的性质可求出A
14、.【详解】解:ACD=110,ACB=180-110=70;AB=AC,B=ACB=70;A=ACD-B=110-70=40.故答案为40.【考点】本题考查了等边对等角和三角形外角的性质.4、【解析】【分析】利用基本作图得到AG平分BAC,则可计算出BAG=CAG=B=30,所以AG=BG;根据直角形三角形30角所对直角边是斜边的一半,知AG=2CG,则BG=BC,然后根据三角形面积与(底)高的关系计算的值【详解】解:由作法得,AG平分BACBAG=CAG=30B=90BAC=30B=BAGAG=BG在RtACG中,AG=2CGBG=2CGBG=BC=故答案为:【考点】本题考查了作图复杂作图,
15、角平分线的性质,等腰三角形的性质,含30角的直角三角形三边的关系及三角形面积与底(高)的关系解题的关键是熟悉基本几何图形的性质5、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案【详解】如图,过点D作平分,又则解得故答案为:3【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键三、解答题1、【解析】【分析】过点作的垂线,垂足为,分别利用AAS证得,利用全等三角形的面积相等即可求解【详解】证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹
16、)如图所示,在和中,又,又同理可得故答案为:、【考点】本题考查了全等三角形的判定和性质,掌握全等三角形的面积相等是解题的关键2、(1)见详解;(2)见详解【解析】【分析】(1)根据AAS,即可证明;(2)根据全等三角形的性质得OB=OC,进而即可得到结论【详解】证明:(1)在与中,(AAS);(2),OB=OC,【考点】本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS判定三角形全等,是解题的关键3、详见解析【解析】【分析】由等边三角形的性质以及题设条件,可证ADBAEC,由全等三角形的性质可得【详解】证明:是等边三角形,AB=AC,ABC=ACB,ABD=ACE,在ADB
17、和AEC中, ADBAEC(SAS),【考点】本题考查等边三角形的性质、补角的性质、全等三角形的判定和性质,综合性强,但是整体难度不大4、(1)见解析;(2)等边对等角;内错角相等,两直线平行【解析】【分析】(1)按照步骤作图即可;(2)由作法知,OA=AB,AC是MAB的平分线,然后根据等腰三角形的性质,三角形外角的性质,以及角平分线的定义说明即可【详解】解:(1)作图如下: (2)证明:,(等边对等角)是的一个外角, 平分,.(内错角相等,两直线平行)故答案为:等边对等角;内错角相等,两直线平行【考点】本题考查了作一条线段等于已知线段,作角的角平分线,以及等腰三角形的性质,三角形外角的性质,以及角平分线的定义等知识,熟练掌握各知识点是解答本题的关键5、(1)证明见解析;(2)BOC=100【解析】【分析】(1)首先根据等腰三角形的性质得到ABC=ACB,然后利用高线的定义得到ECB=DBC,从而得证;(2)首先求出A的度数,进而求出BOC的度数【详解】解:(1)证明:AB=AC,ABC=ACB,BD、CE是ABC的两条高线,DBC=ECB,OB=OC;(2)ABC=50,AB=AC,A=180250=80,BOC=360-18080=100【考点】考点:等腰三角形的性质