1、人教版九年级数学上册第二十四章圆章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D1692、如图,AB是半圆的直径,点D是
2、弧AC的中点,ABC50,则BCD()A105B110C115D1203、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD4、如图,AB是O的弦,等边三角形OCD的边CD与O相切于点P,连接OA,OB,OP,AD若COD+AOB180, AB6,则AD的长是()A6B3C2D5、如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D1006、如图,在四边形ABCD中,则AB()A4B5CD7、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,
3、点B在C外,则半径r的取值范围是()ABCD8、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()ABCD9、已知扇形的圆心角为,半径为,则弧长为()ABCD10、如图,AB为的直径,C,D为上的两点,若,则的度数为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是_2、如图所示,AB、AC为O的两条弦,延长CA到点D,AD=AB,若AD
4、B=35,则BOC=_3、如图,四边形是的外切四边形,且,则四边形的周长为_4、若O的半径为6cm,则O中最长的弦为_厘米5、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_三、解答题(5小题,每小题10分,共计50分)1、下列每个正方形的边长为2,求下图中阴影部分的面积2、如图所示,四边形ABCD的顶点在同一个圆上,另一个圆的圆心在AB边上,且该圆与四边形ABCD的其余三条边相切求证:3、如图,已知O为RtABC的内切圆,切点分别为D,E,F,且C90,AB13,BC12(1)求BF的长;(2)求O的半径r4、如图,正五边形内接于,为上的一点(点不与点重合),求的余
5、角的度数5、如图,在中,以为直径的O与相交于点,过点作O的切线交于点(1)求证:;(2)若O的半径为,求的长-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=10,解得r=5,然后计算底面积与侧面积的和【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10,解得R=12,2r=10,解得r=5,所以该圆锥的全面积=52+1012=85故选B【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的
6、半径等于圆锥的母线长2、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到ADC的度数,再根据点D是弧AC的中点,可以得到DCA的度数,直径所对的圆周角是90,从而可以求得BCD的度数【详解】解:连接AC,ABC50,四边形ABCD是圆内接四边形,ADC130,点D是弧AC的中点,CDAC,DCADAC25,AB是直径,BCA90,BCDBCA+DCA115,故选:C【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答3、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥
7、底面的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键4、C【解析】【分析】如图,过作于 过作于 先证明三点共线,再求解的半径, 证明四边形是矩形,再求解 从而利用勾股定理可得答案.【详解】解:如图,过作于 过作于 是的切线, 三点共线, 为
8、等边三角形, 四边形是矩形, 故选:【考点】本题考查的是等腰三角形,等边三角形的性质,勾股定理的应用,矩形的判定与性质,切线的性质,锐角三角函数的应用,灵活应用以上知识是解题的关键.5、D【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【考点】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法6、D【解析】【分析
9、】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.7、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4
10、,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.8、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解【详解】解:设圆锥母线长为R,由题意得:圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,圆锥的高为;故选C【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键9、D【解析】【分析】根据扇形的弧长公式计算即可【详解】扇形的圆心角为 30 ,半径为 2cm ,弧长cm故答案为:D【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的
11、关键10、B【解析】【分析】连接AD,如图,根据圆周角定理得到,然后利用互余计算出,从而得到的度数【详解】解:连接AD,如图,AB为的直径,故选B【考点】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、2或【解析】【分析】分,和 确定点M的运动范围,结合抛物线的对称轴与,共有三个不同的交点,确定对称轴的位置即可得出结论【详解】解:由题意得:O(0,0),A(3,4)为直角三角形,则有:当时, 点M在与OA垂直的直线上运动 (不含点O);如图,当时,点M在与OA垂直的直线上运动 (不含点A);当时,点M在与OA为直径的圆上运动
12、,圆心为点P,点P为OA的中点, 半径r= 抛物线的对称轴与x轴垂直由题意得,抛物线的对称轴与,共有三个不同的交点,抛物线的对称轴为的两条切线,而点P到切线,的距离 ,又直线的解析式为:;直线的解析式为:;或4或-8故答案为:2或-8【考点】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度运用数形结合、分类讨论是解题的关键2、140【解析】【分析】在等腰中,根据三角形的外角性质可求出外角的度数;而是同弧所对的圆周角和圆心角,可根据圆周角和圆心角的关系求出的度数【详解】ABD中,AB=AD,则: 故答案为【考点】考查圆周角定理,在同圆或等圆中
13、,同弧或等弧所对的圆周角等于圆心角的一半.3、48【解析】【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案【详解】解:四边形ABCD是O的外切四边形,AE=AH,BE=BF,CF=CG,DH=DG,AD+BC=AB+CD=24,四边形ABCD的周长=AD+BC+AB+CD=24+24=48,故答案为:48【考点】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键4、12【解析】【详解】解:O的半径为6cm,O的直径为12cm,即圆中最长的弦长为12cm故答案为125、6【
14、解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键三、解答题1、2.28【解析】【分析】由图形可知阴影面积=半圆面积-两个小三角形面积和,根据公式计算即可【详解】r22-2222=3.14222-4=2.28【考点】本题考查了圆的面积公式,解题的关键是熟练掌握间接法求阴影部分图形的面积2、见解析【解析】【分析】证法一,在射线
15、EA上截取,连接OD,OE,OF,OG,因为,所以,所以,由圆的内接四边形性质得,由AD,DC是半圆O的切线得,即,所以,同理,即可得出结论证法二,在BO上截取,连接FM,OF过点O作,交FM的延长线于点N,连接OE,OD,易证,所以由圆的内接四边形性质得,所以因为,所以,得,所以,同理得,即可得出结论【详解】证法一 如图所示,与AD相切于点E,与BC相切于点F,在射线EA上截取,连接OD,OE,OF,OG,则易证,四边形ABCD内接于圆,AD,DC是半圆O的切线,即,同理,证法二 如图所示,与AD相切于点E,与BC相切于点F,在BO上截取,连接FM,OF过点O作,交FM的延长线于点N,连接O
16、E,OD,AD,DC是半圆O的切线,四边形ABCD内接于圆,同理,【考点】本题主要考查了圆的内接四边形性质、切线的性质,解题的关键是理清题意,正确作出辅助线3、(1)BF10;(2)r=2【解析】【分析】(1)设BFBDx,利用切线长定理,构建方程解决问题即可(2)证明四边形OECF是矩形,推出OECF即可解决问题【详解】解:(1)在RtABC中,C90,AB13,BC12,AC5,O为RtABC的内切圆,切点分别为D,E,F,BDBF,ADAE,CFCE,设BFBDx,则ADAE13x,CFCE12x,AE+EC5,13x+12x5,x10,BF10(2)连接OE,OF,OEAC,OFBC,
17、OECCOFC90,四边形OECF是矩形,OECFBCBF12102即r2【考点】本题考查三角形的内心,勾股定理,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、54【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题【详解】如图,连接五边形是正五边形,90-36=54,的余角的度数为54【考点】本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)见详解;(2)4.8【解析】【分析】(1)连接OD,由AB=AC,OB=OD,则B=ODB=C,则ODAC,由DE为切线,即可得到结论成立;(2)连接AD,则有ADBC,得到BD=CD=8,求出AD=6,利用三角形的面积公式,即可求出DE的长度【详解】解:连接OD,如图:AB=AC,B=C,OB=OD,B=ODB,B=ODB=C,ODAC,DE是切线,ODDE,ACDE;(2)连接AD,如(1)图,AB为直径,AB=AC,AD是等腰三角形ABC的高,也是中线,CD=BD=,ADC=90,AB=AC=,由勾股定理,得:,;【考点】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度