收藏 分享(赏)

2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx

上传人:a**** 文档编号:696225 上传时间:2025-12-13 格式:DOCX 页数:31 大小:537.17KB
下载 相关 举报
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第1页
第1页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第2页
第2页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第3页
第3页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第4页
第4页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第5页
第5页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第6页
第6页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第7页
第7页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第8页
第8页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第9页
第9页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第10页
第10页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第11页
第11页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第12页
第12页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第13页
第13页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第14页
第14页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第15页
第15页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第16页
第16页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第17页
第17页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第18页
第18页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第19页
第19页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第20页
第20页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第21页
第21页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第22页
第22页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第23页
第23页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第24页
第24页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第25页
第25页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第26页
第26页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第27页
第27页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第28页
第28页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第29页
第29页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第30页
第30页 / 共31页
2022年人教版九年级数学上册第二十四章圆定向测评试卷(解析版).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,

2、则圆锥的表面积为()ABCD2、已知扇形的圆心角为,半径为,则弧长为()ABCD3、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD4、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD5、如图,破残的轮子上,弓形的弦AB为4m,高CD为1m,则这个轮子的半径长为()AmBmC5mDm6、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD7、

3、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定8、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD9、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD10、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,O的直径AB26,弦CDAB,垂足为E,OE:BE5:

4、8,则CD的长为_2、如图,直线、相交于点,半径为1cm的的圆心在直线上,且与点的距离为8cm,如果以2cm/s的速度,由向的方向运动,那么_秒后与直线相切.3、如图,在中,以点为圆心、为半径的圆交于点,则弧AD的度数为_度4、如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB于点P,已知OAB=22,则OCB=_5、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_三、解答题(5小题,每小题10分,共计50分)1、如图1,正方形ABCD中,点P、Q是对角线BD上的两个动点,点P从点B出发沿着BD以1cm/s的速度向点D运动;点Q同时从点

5、D出发沿着DB以2cm的速度向点B运动设运动的时间为xs,AQP的面积为ycm2,y与x的函数图象如图2所示,根据图象回答下列问题:(1)a (2)当x为何值时,APQ的面积为6cm2;(3)当x为何值时,以PQ为直径的圆与APQ的边有且只有三个公共点2、如图,OC为O的半径,弦ABOC于点D,OC10,CD4,求AB的长3、(1)如图,在ABC中,AB=4,AC=3,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形

6、场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由4、如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,连接(1)求的度数;(2)若,求的长5、如图,内接于,则的直径等于多少?-参考答案-一、单选题1、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于

7、圆锥底面的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键2、D【解析】【分析】根据扇形的弧长公式计算即可【详解】扇形的圆心角为 30 ,半径为 2cm ,弧长cm故答案为:D【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键3、

8、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距4、D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB

9、,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质5、D【解析】【分析】连接OB,由垂径定理得出BD的长;连接OB,再在中,由勾股定理得出方程,解方程即可【详解】解:连接OB,如图所示:由题意得:OCAB,ADBDAB2(m),在RtOBD中,根据勾股定理得:OD2+BD2OB2,即(OB1)2+22OB2,解得:OB(m),即这个轮子的半径长为m,故选:D【考点】本题主要考查垂径

10、定理的应用以及勾股定理,熟练掌握垂径定理和勾股定理是解题的关键6、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点7、A【解析】【分析】先求出点A到圆心O的距离,再根据点与圆的位置依据判断可得【详解】解:点A(4,

11、3)到圆心O的距离,OAr5,点A在O上,故选:A【考点】本题考查了对点与圆的位置关系的判断关键要记住若半径为,点到圆心的距离为,则有:当时,点在圆外;当时,点在圆上,当时,点在圆内,也考查了勾股定理的应用8、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键9、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF

12、使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的10、A【解析】【分析】连接DF,EF,过点F作FNAC,FMAB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,DFE=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共

13、圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键二、填空题1、24【解析】【分析】连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,OEC=90,然后由勾股定理求出CE=12,即可求解【详解】解:连接OC,如图所示:直径AB=26,OC=OB=

14、13,OE:BE=5:8,OE=5,BE=8,弦CDAB,CE=DE,OEC=90,CE=12,CD=2CE=24,故答案为:24【考点】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键2、3或5【解析】【分析】分类讨论:当点P在当点P在射线OA时P与CD相切,过P作PECD与E,根据切线的性质得到PE=1cm,再利用含30的直角三角形三边的关系得到OP=2PE=2cm,则P的圆心在直线AB上向右移动了(8-2)cm后与CD相切,即可得到P移动所用的时间;当点P在射线OB时P与CD相切,过P作PECD与F,同前面一样易得到此时P移动所用的时间【详解】当

15、点P在射线OA时P与CD相切,如图,过P作PECD与E,PE=1cm,AOC=30,OP=2PE=2cm,P的圆心在直线AB上向右移动了(8-2)cm后与CD相切,P移动所用的时间=3(秒);当点P在射线OB时P与CD相切,如图,过P作PECD与F,PF=1cm,AOC=DOB=30,OP=2PF=2cm,P的圆心在直线AB上向右移动了(8+2)cm后与CD相切,P移动所用的时间=5(秒)故答案为3或5【考点】本题考查直线与圆的位置关系:直线与有三种位置关系(相切、相交、相离)也考查了切线的性质解题关键是熟练掌握以上性质.3、【解析】【分析】由三角形内角和得A=90B=65再由AC=CD,AC

16、D度数可求,可解【详解】连接CDACB=90,B=25,A=90B=65CA=CD,A=CDA=65,ACD=1802A=50,弧AD的度数是50度【考点】本题考查了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、44【解析】【分析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=C

17、PB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【考点】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用5、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法的特点进行证明,即可求出答案【详解】证明:已知两条直线都和第三条直线平行;假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平行因此假设与结论矛盾故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行故答案为:这两条直线不平行【考点】本题主要考查了反证法,在

18、解题时要根据反证法的特点进行证明是本题的关键三、解答题1、(1)9;(2)x或x4;(3)x0或x2或2x3【解析】【分析】(1)由题意可得Q运动3s达到B,即得BD=6,可知,从而a=ABAD=9;(2)连接AC交BD于O,可得OA=AC=BD=3,根据APQ的面积为6,即得PQ=4,当P在Q下面时,x=,当P在Q上方时,Q运动3s到B,x=4;(3)当x=0时,B与P重合,D与Q重合,此时以PQ为直径的圆与APQ的边有且只有三个公共点,同理t=6时,以PQ为直径的圆与APQ的边有且只有三个公共点,当Q运动到BD中点时,以PQ为直径的圆与AQ相切,与APQ的边有且只有三个公共点,x=,当P、

19、Q重合时,不构成三角形和圆,此时x=2,当Q运动到B,恰好P运动到BD中点,x=3,以PQ为直径的圆与APQ的边有且只有三个公共点,即可得到答案【详解】解:(1)由题意可得:Q运动3s达到B,BD=32=6,四边形ABCD是正方形,a=ABAD=9,故答案为:9;(2)连接AC交BD于O,如图:四边形ABCD是正方形,ACBD,OA=AC=BD=3,APQ的面积为6,PQOA=6,即PQ3=6,PQ=4,而BP=x,DQ=2x,当P在Q下面时,6-x-2x=4,x=,当P在Q上方时,Q运动3s到B,此时PQ=3,x=4时,PQ=4,则APQ的面积为6;综上所述,x=或x=4;(3)当x=0时,

20、如图:B与P重合,D与Q重合,此时以PQ为直径的圆与APQ的边有且只有三个公共点,同理,当Q运动到B,P运动到D时,以PQ为直径的圆与APQ的边有且只有三个公共点,此时t=6,当Q运动到BD中点时,如图:此时x=,以PQ为直径的圆与AQ相切,故与APQ的边有且只有三个公共点,当P、Q重合时,如图:显然不构成三角形和圆,此时x=2,当Q运动到B,恰好P运动到BD中点,如图:此时x=3,以PQ为直径的圆与APQ的边有且只有三个公共点,综上所述,以PQ为直径的圆与APQ的边有且只有三个公共点,x=0或t=6或x2或2x3【考点】本题考查正方形中的动点问题,涉及函数图象、三角形面积、直线与圆的位置关系

21、等知识,解题关键是画出图形,数形结合,分类思想的应用2、16【解析】【分析】连接OA,根据垂径定理可得AB=2AD,再由勾股定理,可得AD=8,即可求解【详解】解:如图,连接OA,OC为O的半径,弦ABOC,AB=2AD,OC10,CD4,OA=OC=10,OD=OC-CD=6,在中,由勾股定理得: ,AB=16【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂直弦的直径平分这条弦,并且平分线所对的两条弧是解题的关键3、(1);(2) 四边形ABCD的面积为32;(3)存在【解析】【分析】(1)如图,作辅助线,证明AE=DE;证明BDEBCA ,得到,列出比例式即可解决问题(2)(2)连接O

22、B,根据题意得AOB=60,作AEBD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC,可得,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可【详解】解:如图,过点D作DEAB于点E则DE/AC;AD平分BAC,BAC=90,DAE=45,ADE=9045=45,AE=DE(设为),则BE=4;DE/AC, BDEBCA,即:解得:= ,点D到AC的距离(2)连接OB, 点B是半圆AC的三等分点(弧AB弧BC), AC是的直径, BD平分ABC过点A作AE

23、BD于点E,则AE=BE设AE=BE=x,则BD=BE+DE=x=BC=BD平分ABC AD=CD AEDE , = = =32;(3)过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC, AB=ADACB=ACDAM=ANADC+ABC=180,ADC+ADM=180,ABC=ADM又ANB=AMD=90,ABNADM AN=AM,BCA=DCA,AC=ACACNACM ABC=60ADC=120ADM=60,MAD=30设DM=x,则AD=2x, ,即抛物线对称轴为x=5当x=4时,有最大值,为【考点】本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆

24、周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题4、(1)55;(2)【解析】【分析】(1)连接OC,如图,利用切线的性质得到OCCD,则判断OCAE,所以DAC=OCA,然后利用OCA=OAC得到OAB的度数,即可求解;(2)利用(1)的结论先求得AEOEAO70,再平行线的性质求得COE=70,然后利用弧长公式求解即可【详解】解:(1)连接OC,如图,CD是O的切线,OCCD,AECD,OCAE,DAC=OCA,OA=OC,CAD=35,OAC=OCA=CAD=35,AB为O的直径,ACB=90,B=90-OAC=55;(2)连接OE,OC,如图,由(1)得EAO=OA

25、C+CAD=70,OA=OE,AEOEAO70,OCAE,COE=AEO=70,AB=2,则OC=OE=1,的长为【考点】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线5、12【解析】【分析】连接OB、OC,如图,利用圆周角定理得到BOC60,则可判断OBC为等边三角形,从而得到OB6【详解】解:连接OB、OC,如图,BOC2BAC23060,而OBOC,OBC为等边三角形,OBBC6,O的直径等于12故答案为:12【考点】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理,掌握这些知识点是解题关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1