收藏 分享(赏)

2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx

上传人:a**** 文档编号:695995 上传时间:2025-12-13 格式:DOCX 页数:23 大小:699.59KB
下载 相关 举报
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第1页
第1页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第2页
第2页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第3页
第3页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第4页
第4页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第5页
第5页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第6页
第6页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第7页
第7页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第8页
第8页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第9页
第9页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第10页
第10页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第11页
第11页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第12页
第12页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第13页
第13页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第14页
第14页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第15页
第15页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第16页
第16页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第17页
第17页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第18页
第18页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第19页
第19页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第20页
第20页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第21页
第21页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第22页
第22页 / 共23页
2022年人教版九年级数学上册第二十五章概率初步专项攻克试卷(详解版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十五章概率初步专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是()ABCD2、现有4张卡片,正面图案如图所示,它

2、们除此之外完全相同把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )ABCD3、下列命题是真命题的是()A相等的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是4、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD5、箱子内装有除颜色外均相同的28个白球及2个红球,小芬打算从箱子内摸球,以每次摸到一球后记下颜色将球再

3、放回的方式摸28次球若箱子内每个球被摸到的机会相等,且前27次中摸到白球26次及红球1次,则第28次摸球时,小芬摸到红球的概率是()ABCD6、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A20B24C28D307、现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()ABCD8、下列说法正确的是()

4、A367人中至少有2人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为90%,则明天一定会下雨D某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖9、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则的值为()A3B4C5D610、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()ABCD第卷(非选择题 70分)二、填空题(5小

5、题,每小题4分,共计20分)1、巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _2、一个质地均匀的骰子,其六面上分别标有数字1,2,3,4,5,6,投掷一次,朝上的面的数字小于3的概率为 _3、一个不透明的袋子里装有12个球,其中有9个红球,2个黑球,1个白球,它们除颜色外都相同,若从袋子中随机摸出1个球,则它是黑球的概率为_4、在一个不透明的袋子里装有4个白球,若干个黄球,每个球除颜色外均相同,将球搅匀,从中任意摸出一个球,摸到黄球的概率为,则袋子

6、内共有球_个5、一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是_三、解答题(5小题,每小题10分,共计50分)1、四张正面分别写有数字:,0,1的卡片,它们的背面完全相同,现将这四张卡片背面朝上洗匀(1)从中任意抽取一张卡片则所抽卡片上数字为负数的概率是 ;(2)先从中任意抽取一张卡片,以其正面数字作为x的值,然后再从剩余的卡片中随机抽一张,以其正面的数字作为y的值,请用列表法或树状图法求点在坐标轴上的概率2、合肥市2022年中考的理化生实验操作考试已经顺利结束了,绝大部分同学都取

7、得了满分成绩,某校对九年级20个班的实验操作考试平均分x进行了分组统计,结果如下表所示:组号分组频数一1二2三a四8五3(1)求a的值;(2)若用扇形统计图来描述,求第三小组对应的扇形的圆心角度数;(3)把在第二小组内的两个班分别记为:A1,A2,在第五小组内的三个班分别记为:B1,B2,B3,从第二小组和第五小组总共5个班级中随机抽取2个班级进行“你对中考实验操作考试的看法”的问卷调查,求第二小组至少有1个班级被选中的概率3、为増强学生的实践劳动能力,某校本周为全校1000名学生提供了A、B、C、D四种类型特色活动,为了解学生对这四种特色活动的喜好情况,学校随机抽取部分学生进行了“你最喜欢哪

8、一种特色活动(必选且只选一种)”的问卷调查:并根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)被抽取的学生共有人,在抽取的学生中最喜欢C类活动的人数为;扇形统计图中“D”类对应扇形的圆心角的大小为,估计全体1000名学生中最喜欢B活动的有人;(2)根据題意补全条形统计图;(3)现从甲、乙、丙、丁四名学生会成员中任选两人担任此次特色活动的“监督员”,请用树状图或列表法表示出所有可能的結果,求乙被选为“监督员”的概率4、如图,有四张正面标有数字2,1,0,1,背面颜色一样的卡片,正面朝下放在桌面上,小红从四张卡片中随机抽取一张卡片记下数字,小明再从余下的三张卡片中随机抽取一张卡片记下

9、数字设小红抽到的数字为x,小明抽到的数字为y,点A的坐标为(x,y)(1)请用列表法或画树状图的方法列出点A所有结果;(2)若点A在坐标轴上,则小红胜;反之,则小明胜请你用概率的相关知识解释这个游戏是否公平?5、2021年9月7日,湖南永州郡祁学校的一则视频引发热议,视频显示,为教育中学生不要浪费粮食,该校高中部校长王立新站在垃圾桶边当众吃光学生剩饭剩菜这一举动在全国掀起了校园“光盘行动”某校为了让该校学生理解这次活动的重要性,校政教处在某天午餐后,随机调查部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3

10、)若政教处准备从九(2)班就餐光盘的2男1女三名学生中随机抽取两人进行菜品调研,问恰巧抽到1男1女的概率为多少?-参考答案-一、单选题1、C【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案【详解】解:列表如下:积212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故选C【考点】本题考查了列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比2、A【解析】【

11、分析】画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形恰好是“天问”和“九章”的结果有2种,再由概率公式求解即可【详解】解:把印有“北斗”、“天问”、“高铁”和“九章”的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽中的恰好是B和D的结果有2种,所抽取的卡片正面上的图形恰好是“天问”和“九章”的概率为故选:A【考点】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率3、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即

12、可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键4、C【解析】【详解】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状

13、图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【考点】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 5、C【解析】【分析】直接利用概率公式计算【详解】解:因为每次摸到一球后记下颜色将球再放回,所以箱子内总装有除颜色外均相同的28个白球及2个红球,所以第28次摸球时,小芬摸到红球的概率故选:C【考点】本题考查概率公式的应用,对于放回试验,每次摸到红球的概率是相等的.6、D【解析】【分析】直接由概率公式求解即可.【详解】根据题意得=30%,解得:n=30,所以这个不透明的盒子里

14、大约有30个除颜色外其他完全相同的小球故选:D【考点】本题考查由频率估计概率、简单的概率计算,熟知求概率公式是解答的关键.7、D【解析】【详解】分析:直接利用树状图法列举出所有可能进而求出概率详解:令3张用A1,A2,A3,表示,用B表示,画树状图为:,一共有12种可能的情况,其中两张卡片正面图案相同的有6种情况,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:故选D点睛:此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键8、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶

15、数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念9、A【解析】【分析】根据题意可得,然后进行求解即可【详解】解:由题意得:,解得:,经检验是原方程的解;故选A【考点】本题主要考查分式方程的解法及概率,熟练掌握分式方程的解法及概率是解题的关键10、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的

16、三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题二、填空题1、【解析】【分析】设大正方形的边长为2,先求出阴影区域的面积,然后根据概率公式即可得出答案【详解】图,设小正方形的边长为1,根据等腰三角形和正方形的性质可求得AB=BE=,FG=DC=,则空白的面积为:;大正方形的面积是:,阴影区域的面积为:8-5=3,所以针尖落在在阴影区域上的概率是:故答案为:【考点】本题考查几何概率,熟练掌握几何概率的计算方法是解题的关键2、【解析】【分析】根据概率公式直接求解即可【详解】共

17、6个数字,其中小于3的数有2个投掷一次,朝上的面的数字小于3的概率为故答案为:【考点】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键3、【解析】【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:不透明的袋子里装有将12个球,其中2个黑球,任意摸出1个,摸到黑球的概率是故答案为:【考点】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,比较简单4、20【解析】【分析】设袋子内共有球x个,利用概率公式得到 ,然后利用比例性质求出x即可【详解】

18、解:设袋子内共有球x个,根据题意得,解得x=20,经检验x=20为原方程的解,即袋子内共有球20个故答案为20【考点】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数5、【解析】【详解】根据随机事件概率大小的求法,找准两点:朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;所有标法的总数二者的比值就是其发生的概率的大小解:故1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是1/3三、解答题1、 (1)(2)【解析】【分

19、析】(1)直接由概率公式求解即可;(2)画树状图,共有12个等可能的结果,符合条件的结果有2个,再由概率公式求解即可(1)因为四张卡片中,负数有2个,所以,从中任意抽取一张卡片则所抽卡片上数字为负数的概率是,故答案为:;(2)画树状图如图:共有12个等可能的结果,即,点在坐标轴上的结果有6个点在在坐标轴上的概率为【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率2、 (1)a=6;(2)第三小组对应的扇形的圆心角度数为108;(3)第二小组至少有1个班级被选中的概率为【解析】【分析】(1

20、)由总班数20-1-2-8-3即可求出a的值;(2)由(1)求出的a值,即可求出第三小组对应的扇形的圆心角度数;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二小组至少有1个班级被选中的情况,再利用概率公式即可求得答案(1)解:a=20-1-2-8-3=6;(2)解:第三小组对应的扇形的圆心角度数=360=108;(3)解:画树状图得:由树状图可知共有20种可能情况,其中第二小组至少有1个班级被选中的情况数有14种,所以第二小组至少有1个班级被选中的概率=【考点】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完

21、成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比3、 (1)100,30,36,350(2)见解析(3)见解析,【解析】【分析】(1)用最喜欢A类活动的人数除以最喜欢A类活动的人数所占百分比即可得被抽取的学生的总人数;用总人数减去最喜欢A类、B类、D类活动的人数即可到最喜欢C类活动的人数;用最喜欢D类人数除以被抽取学生总数,求出最喜欢D类人数占被抽取学生总数的百分比,再乘以360,即可求出“D”类对应扇形的圆心角;用喜欢B类活动人数除以被抽取学生总人数,得到最喜欢B类人数占被抽取学生总数的百分比,再乘以1000,即可求出最喜欢B活动的人数;(2)按照

22、(1)求出的最喜欢C类活动的人数,补全即可;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可(1)解:被抽取学生总人数为:2525%100(人),在抽取的学生中最喜欢C类活动的人数为:10025351030(人),扇形统计图中D类占被抽取学生的百分比为:,扇形统计图中D类对应扇形的圆心角为:36010%36,扇形统计图中B类占被抽取学生的百分比为:,估计全体1000名学生中最喜欢B活动的有:100035%350(人);故答案为:100,30,36,350(2)解:补全条形统计图如图所示,(3)解:画树状图为:共有12种等可能的结果数,其中乙被选到的结果数为6,

23、乙被选到的概率为:答:乙被选为“监督员”的概率为【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数目n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图4、 (1)见解析(2)公平;理由见解析【解析】【分析】(1)画树状图共有12种等可能结果;(2)找出在坐标轴上的点的数目,求其概率;找出不在坐标轴上的点的数目,求其概率;(1)解:画树状图如图:共有12个等可能的结果,所以点A的结果为:(2)公平;理由如下:点A在坐标轴上共有6个,概率为,不在坐标轴上共有6个,概率为,因为两种情况概率相等,所以是公平的【考点】本题考查了列

24、表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件的结果数目,然后利用概率公式:计算事件的概率解题关键正确画树状图5、 (1)100(2)见解析(3)【解析】【分析】(1)利用光盘的人数除以光盘的人数所占的百分比,即可求解;(2)求出剩少量的人数,即可求解;(3)根据题意,画出树状图,得到共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,再利用概率公式即可求解(1)解:这次被调查的同学共有4040%100(名),故答案为:100;(2)解:剩少量的人数是;10040251520(名),把条形统计图补充完整如下;(3)解:画树状图如图:共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,抽到的两名学生恰为1男1女的概率为【考点】本题主要考查了扇形统计图和条形统计图,利用树状图或列表法求概率,明确题意,从统计图中获取准确信息是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1