收藏 分享(赏)

2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx

上传人:a**** 文档编号:695993 上传时间:2025-12-13 格式:DOCX 页数:23 大小:412.76KB
下载 相关 举报
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第1页
第1页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第2页
第2页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第3页
第3页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第4页
第4页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第5页
第5页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第6页
第6页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第7页
第7页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第8页
第8页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第9页
第9页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第10页
第10页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第11页
第11页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第12页
第12页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第13页
第13页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第14页
第14页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第15页
第15页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第16页
第16页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第17页
第17页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第18页
第18页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第19页
第19页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第20页
第20页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第21页
第21页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第22页
第22页 / 共23页
2022年人教版九年级数学上册第二十二章二次函数难点解析试题(含答案解析版).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD2、如图,正方

2、形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()ABCD3、若y=(m1)是二次函数,则m=()A1B7C1或7D以上都不对4、若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”例如:P(1,0)、Q(2,2)都是“整点”抛物线 y=mx22mx+m1(m0)与 x 轴交于 A、 B 两点,若该抛物线在 A、B 之间的部分与线段 AB 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是()A m B m C m D m 5、已知抛物线yax2+bx+c(a0)如图所示

3、,那么a、b、c的取值范围是()Aa0、b0、c0Ba0、b0、c0Ca0、b0、c0Da0、b0、c06、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc07、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)8、二次函数yax2bxc的图象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)

4、是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x29、二次函数的图象的对称轴是()ABCD10、已知抛物线经过点,那么下列各点中,该抛物线必经过的点是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于任意实数,抛物线与轴都有公共点则的取值范围是_2、将抛物线向上平移2个单位后,得到的新抛物线与y轴交点的坐标为_3、在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a0)与线段MN有两个不同的交点,则a的取值范围是_4、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取

5、值范围是_5、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_三、解答题(5小题,每小题10分,共计50分)1、一个二次函数y=(k1)求k值2、如果函数y=(m3)+mx+1是二次函数,求m的值3、已知关于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值4、超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价(2)如果购进这种苹

6、果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)5、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值-参考答案-一、单选题1、A

7、【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键2、A【解析】【分析】求出抛物线经过两个特殊点时的a的值即可解决问题【详解】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知a3,故选:A【考点】本题考查二次函数图象与系数的关系,二次函数图象

8、上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型3、B【解析】【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可【详解】由题意得:m2-6m-5=2;且m+10;解得m=7或-1;m-1,m=7,故选:B【考点】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为04、B【解析】【分析】先将抛物线化为顶点式写出顶点坐标,然后根据顶点坐标以及恰有6个整点确定A点范围,最后根据A点坐标代入求出m的取值范围.【详解】解:,抛物线顶点坐标为(1,1),如图所示,该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有6个整点,点A在(1,0)与(2,

9、0)之间,包括点(1,0),当抛物线绕过(1,0)时,当抛物线绕过(2,0)时,m的取值范围为,故选B【考点】本题为二次函数关系式与图象的综合运用,要熟悉表达式之间的转化,以及熟练掌握二次函数的图象.5、D【解析】【分析】根据开口方向可判断a的符号,根据对称轴可判断b的符号,根据图像与y轴的交点可判断c的符号.【详解】解:由图象开口可知:a0;由图象与y轴交点可知:c0;由对称轴可知:0,b0;a0,b0,c0,故选:D【考点】本题考查二次函数的图像与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中考常考题型6、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对

10、称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系7、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】

11、此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标8、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B

12、(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键9、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考

13、点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键10、B【解析】【分析】将已知点的坐标代入确定抛物线的解析式,再计算出自变量为0时所对应的函数值即可求解【详解】解:抛物线经过点,物线的解析式为:,时,抛物线必经过的点是故选:B【考点】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,解题的关键是明确题意,利用二次函数的性质解答二、填空题1、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最

14、小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键2、(0,3)【解析】【分析】根据二次函数的平移规律得出新抛物线的解析式,再令x=0即可得出答案;【详解】解:抛物线向上平移2个单位得到新抛物线的解析式为,当x=0,则y=3,得到的新抛物线图象与y轴的交点坐标为:(0,3)故答案为:(0,3)【考点】此题主要考查了主要考查了二次函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式会利用方程求抛物线与坐标轴的交点3、或【解析】【分析】由题意可求点,点,分,两种情况讨论,根据题意列出不等式组,可求a的取

15、值范围【详解】直线经过点和点,抛物线与线段MN有两个不同的交点,当时,解得:,当时,解得:,综上所述:或.故答案为或.【考点】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键4、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题

16、的难度5、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=-4抛物线解析式为:抛物线顶点(2,-3)满足题意n的最小值为4,故答案为:4【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴三、解答题1、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2

17、,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件2、0【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数是二次函数,即可答题【详解】解:根据二次函数的定义:m23m+2=2,且m30,解得:m=0【考点】本题考查二次函数的定义,解题的关键是熟练掌握二次函数的定义3、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得

18、:x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=4、(1)苹果的进价为10元/千克;(2);(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克【解析】【分析】(1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;(2)分两种情况:

19、当x100时, 当x100时,分别列出函数解析式,即可;(3)分两种情况:若x100时,若x100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解【详解】解:(1)设苹果的进价为x元/千克,由题意得:,解得:x=10,经检验:x=10是方程的解,且符合题意,答:苹果的进价为10元/千克;(2)当x100时,y=10x,当x100时,y=10100+(10-2)(x-100)=8x+200,;(3)若x100时,w=zx-y=,当x=100时,w最大=100,若x100时,w=zx-y=,当x=200时,w最大=200,综上所述:当x=200时,超市销售苹果利润w最大,答:要使超市

20、销售苹果利润w最大,一天购进苹果数量为200千克【考点】本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键5、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1