1、角的比较和运算【教学目标】知识与技能:会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.过程与方法:经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣,实际观察、操作,体会角的大小,培养学生的观察思维能力.情感态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益.【教学重难点】重点:角的比较与角平分线概念.难点:用尺规画一个角等于已知角.【教学过程】一、创设情境,导入新课设计意图:通过对线段大小比较的类比,探究角的大小的比较方法,既巩固了新知识,又引入了新知识.教师提出问题:1.角的表示方法有几
2、种?2.怎样比较两条线段的大小?学生思考后回答.二、探究新知设计意图:通过出示两张角的纸片,提出问题,激发学生的求知欲,引导学生主动探索解决问题的方法,自然而然地引入本节课新内容的探究.(一)角的比较如图,已知ABC和DEF.请大家讨论一下,用什么方法可以比较这两个角的大小?1.分组讨论角的比较方法.在学生讨论的过程中,教师深入学生中间巡视,观察并听取他们解决问题的方法和建议,可适当组织交流或分组汇报,师生共同归纳角的比较方法.(1)度量法:用量角器量出角的度数,然后比较它们的大小.(2)叠合法:把两个角叠合在一起比较大小 .2.观察右图形,图中共有几个角?它们之间有什么关系?师生共同探讨后得
3、出结论.问题:用一副三角尺,你能画出哪些度数的角?让学生动手做一做,试一试,然后师生共同归纳看一看都可以得到哪几个角.(二)角的计算教师出示例题:如图,O是直线AB上一点,AOC=5317,求BOC的度数.分析:(1)AB是直线,AOB是什么角?它是多少度?(2)BOC,AOC,AOB之间是什么关系?学生讨论完以上两个问题,然后师生共同解决问题,过程中教师应当关注学生能否准确叙述求角的过程,同时关注学生求值是否正确.(三)角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合,想想看,折痕与角两边所成的两个角的大小有什么关系?让学生多想一想,做一做,通过观察和思考,然后师生共同归纳结论
4、,引出角的平分线定义及其几何表达式,类似的还有角的四等分线、三等分线等.如图,OC是AOB的平分线,根据图形填空:AOB=AOC=COB,AOC=COB=AOB.三、综合运用设计意图:通过对练习的解决,进一步巩固所学的知识,培养学生的几何语言的使用能力,进一步掌握角的有关计算,加深对角平分线的理解,渗透数形结合的数学思想.教师出示练习:1.如果一个角是另一个角的3倍,且这两个角的和是90,求这两个角的度数.2.如图,O是直线AB上一点,OD平分AOC,OE平分BOC,求DOE的度数.学生练习后交流结果,教师应当关注第2个题,一是问题的分析,二是解答过程的叙述.四、课后作业1.如图所示,比较下列四个角的大小,并用“”连接.【答案】DBAC.2.将一副三角板如图放置:(1)按图填空:ACB=ACE+,ABD=CBD-.(2)你能算出ACE与ABD的度数吗?【答案】(1)ECDABC(2)60135【板书设计】一、创设情境,导入新课二、探究新知(一)角的比较(二)角的计算(三)角平分线三、综合运用四、课后作业3