1、京改版八年级数学上册第十章分式专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取
2、,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD2、在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基, 拥有RNA病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍0.000000125用科学记数法表示为()A1.2510-6B1.2510-7C1.25106D1.251073、化简的结果为,则()A4B3C2D14、若关于x的分式方程的解为,则常数a的值为()ABCD5、化简的结果是()AB
3、CD6、下列哪个是分式方程()ABCD7、若a+b=5,则代数式(a)()的值为()A5B5CD8、下列等式成立的是()A(3)29B(3)2Ca14Da2b69、下列运算中正确的是()ABCD10、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A千米B千米C千米D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、计算(1)(x)(2)(2)(4)3、计算的结果是_4、若关于的分式方程的解为正数,则的取值范围是_5、比较大小:_(选填,)三、解答题(5小题,每小题10分,共计
4、50分)1、观察下列各式:,请你根据上面各式的规律,写出符合该规律的一道等式:_请利用上述规律计算:_(用含有的式子表示)请利用上述规律解方程:2、阅读理解,并解决问题.分式方程的增根:解分式方程时可能会产生增根,原因是什么呢?事实上,解分式方程时产生增根,主要是在去分母这一步造成的.根据等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.但是,当等式两边同乘0时,就会出现的特殊情况.因此,解方程时,方程左右两边不能同乘0.而去分母时会在方程左右两边同乘公分母,此时无法知道所乘的公分母的值是否为0,于是,未知数的取值范围可能就扩大了.如果去分母后得到的整式方程的根使所乘的
5、公分母值为0,此根即为增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必须验根.请根据阅读材料解决问题:(1)若解分式方程时产生了增根,这个增根是 ;(2)小明认为解分式方程时,不会产生增根,请你直接写出原因;(3)解方程3、某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达已知乙车的平均速度是甲车的平均速度的1.2倍,求甲车的平均速度4、规定一种新运算:ab2a+b2,例如:2122+124+15(1)计算:53;(2)若x1,求x的值;(3)先化简,再求值:,其中
6、x的值从(1)(2)的计算结果选取5、计算:(1)()3()2(2)()-参考答案-一、单选题1、D【解析】【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【考点】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键2、B【解析】【分析】根据科学记数法的表示方法将原数表示为的形式,其中,n是正整数【详解】解:0.000000125=1.2510-7,故答
7、案选:B【考点】本题考查了科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0)3、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则4、D【解析】【分析】根据题意将原分式方程的解代入原方程求出a的值即可【详解】解:关于的分式方程解为,经检验,a=1是方程的解,故选:D【考点】本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键5、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分
8、母为,通分得故选D【考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母6、B【解析】【分析】根据分式方程的定义对各选项进行逐一分析即可【详解】解:,是整式方程,故此选项不符合题意;,是分式方程,故此选项符合题意;,是整式方程,故此选项不符合题意;,是整式方程,故此选项不符合题意【考点】本题考查的是分式方程的定义,熟知分母中含有未知数的方程叫做分式方程是解答此题的关键7、B【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值【详解】a+b=5,原式 故选:B【考点】考查分式的化简求值,掌握减法法则以及除法法师是解题
9、的关键,注意整体代入法在解题中的应用8、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24a14,本选项错误;D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则9、D【解析】【分析】根据分式的基本性质和分式的加减运算法则逐一计算、判断即可得【详解】解:A,此选项错误;B,此选项错误;C,此选项错误;D,此选项正确;故选:D【考点】本题考查了分式的加减法,解题的关键是掌握
10、分式的基本性质和分式的加减运算法则10、C【解析】【详解】平均速度=总路程总时间,题中没有单程,可设单程为1,那么总路程为2依题意得:2()=2=千米故选C【考点】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系当题中没有一些必须的量时,为了简便,可设其为1二、填空题1、2【解析】【分析】利用分式同分母运算法则进行合并,并化简即可得出结果【详解】解:,故答案为:2【考点】本题主要考查的是分式加法运算的基础运算,掌握其运算法则是解题的关键2、(1)28x3;(2);(3)(xy)4;(4)x27【解析】【分析】(1)先计算乘方,再计算除法,最后计算减法即可;(2)先计算零次幂
11、,乘方,再计算加减法;(3)先计算乘方,再计算乘法即可;(4)先按照完全平方公式、去括号法则去括号,再合并同类项.【详解】(1)(x),=-,=,=28x3;(2),=1-+4,=;(3),=,=;(4)=,= x27.【考点】此题考查计算能力,有理数的混合运算,整式的混合运算,按照先计算乘方再算乘除法,最后计算加减法的顺序进行计算.3、【解析】【分析】先通分,再相加即可求得结果【详解】解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可4、且【解析】【分析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围【详解】解:去分母得,m-1=2x
12、-2,解得,方程的解是正数,m+10,解这个不等式得,m-1,m1,则m的取值范围是m-1且故答案为:m-1且【考点】本题考查了分式方程的解,解题关键是要掌握解分式方程的方法和步骤5、【解析】【分析】先计算,然后比较大小即可【详解】解:,故答案为:【考点】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键三、解答题1、(1);(2);(3)【解析】【分析】根据阅读材料,总结出规律,然后利用规律变形计算即可求解.【详解】解:答案不唯一;故答案为;原式 ;故答案为 分式方程整理得:,即,方程两边同时乘,得,解得:,经检验,是原分式方程的解所以原方程的解为:【
13、考点】此题主要考查了阅读理解型的规律探索题,利用分数和分式的性质,把分式进行变形是解题关键.2、(1)x=2;(2)见解析;(3)无解【解析】【分析】(1)由题意直接看出即可.(2)找到最简公分母,判断最简公分母的范围即可.(3)利用分式方程的运算方法解出即可.【详解】(1)(2)原分式方程的最简公分母为,而解这个分式方程不会产生增根.(3)方程两边同乘,得解得:经检验:当时,所以,原分式方程无解.【考点】本题考查分式方程的增根,关键在于理解增根的意义.3、甲车的平均速度是60千米/时【解析】【分析】设甲车的平均速度是千米/时,则乙车的平均速度是千米/时,由题意:此基地距离该校90千米,甲班的
14、甲车出发15分钟后,乙班的乙车才出发,结果他们同时到达,列出分式方程,求解即可【详解】解:设甲车的平均速度是千米/时,则乙车的平均速度是千米/时, 根据题意,得, 解得经检验,是原方程的解, 答:甲车的平均速度是60千米/时【考点】本题考查了分式方程的应用,找到合适的等量关系,正确列出分式方程是解题的关键4、(1)531;(2)x3;(3)x+1,2【解析】【分析】(1)根据题目中所给新运算方法,代入即可得;(2)根据新运算法则代入可得关于x的一元一次方程,求解即可;(3)根据分式的除法运算法则先通分,然后化简即可,另外考虑分母不为0的情况,代入数值计算即可【详解】解:(1)53;(2)x1,解得:;(3),;,当时,原式【考点】题目主要考查整式的运算及对新运算法则的理解,理清新运算法则及掌握分式除法是解题关键5、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则