1、京改版八年级数学上册第十二章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于
2、点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D22、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D83、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个4、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD5、下列图形中,是轴对称图形的是()ABCD6、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平
3、分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D57、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等8、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD9、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBADCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D510、一条船从海岛A出发,以15海里/时的速度向正北航行,
4、2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AB=5,AC=13,BC边上的中线AD=6,则ABD的面积是_2、如图,在ABC中,D,E分别是边AB,AC上一点,将ABC沿DE折叠,使点A的对称点A落在边BC上,若A50,则1+2+3+4_3、如图,ABCD于B,ABD和BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_4、如图,在等腰直角三角形ABC中,BAC90,在BC上截取
5、BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm25、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,垂足分别为与相交于点,(1)求证:;(2)在不添加任何辅助线的情况下,请直接写出图中四对全等的三角形2、如图,在中,D是边上的点,垂足分别为E,F,且求证:3、已知:中,BC边上的高,求BC4、如图,已知射线AB与直线CD交于点O,OF平分BOC,OGOF于O,AEOF,且A=30(1)求DOF的度数;(2)试
6、说明OD平分AOG5、如图,在45的正方形网格中,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、B均在格点上,以AB为边画等腰ABC,要求点C在格点上(1)在图、图中画出两种不同形状的等腰三角形ABC(2)格点C的不同位置有 处-参考答案-一、单选题1、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质2、
7、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2,a2+b2c2,将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键3、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A
8、+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.4、B【解析】【分析】先
9、根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键5、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,
10、使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴6、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平
11、分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD
12、=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型7、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定
13、该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.8、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键9、B【解析】【分析】过点E作EFAD垂足为点F,证
14、明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,FAEBAE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(AAS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF90,即AED
15、E故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上所知正确的结论有3个故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键10、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB
16、,题目比较典型,难度不大二、填空题1、15【解析】【分析】延长AD到点E,使DE=AD=6,连接CE,可证明ABDCED,所以CE=AB,再利用勾股定理的逆定理证明CDE是直角三角形,即ABD为直角三角形,进而可求出ABD的面积【详解】解:延长AD到点E,使DE=AD=6,连接CE,AD是BC边上的中线,BD=CD,在ABD和CED中,ABDCED(SAS),CE=AB=5,BAD=E,AE=2AD=12,CE=5,AC=13,CE2+AE2=AC2,E=90,BAD=90,即ABD为直角三角形,ABD的面积=ADAB=15故答案为15【考点】本题考查了全等三角形的判定和性质、勾股定理的逆定理
17、的运用,解题的关键是添加辅助线,构造全等三角形2、230【解析】【分析】依据三角形内角和定理,可得ABC中,B+C130,再根据1+2+B180,3+4+C180,即可得出1+2+3+4360(B+C)230【详解】解:A50,ABC中,B+C130,又1+2+B180,3+4+C180,1+2+3+4360(B+C)360130230,故答案为:230【考点】本题主要考查三角形内角和,熟练掌握三角形内角和及角之间的等量关系是解题的关键3、13【解析】【分析】先根据BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据ABD是等腰直角三角形可知AB=BD在RtABC中利用勾股定理即可求出A
18、C的长【详解】BCE等腰直角三角形,BE=5,BC=5CD=17,DB=CDBE=175=12ABD是等腰直角三角形,AB=BD=12在RtABC中,AB=12,BC=5,AC13故答案为13【考点】本题考查了等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键4、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键5、6【解
19、析】【分析】在AD上截取AF=AE,连接BF,易得ABFACE,根据全等三角形的性质可得BFA=E,CE=BF,则有D=DFB,然后根据等腰三角形的性质可求解【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,FAB=EAC,BF=EC,BFA=E,D+E=180,BFA+DFB=180,DFB=D,BF=BD, BD=6,CE=6故答案为6【考点】本题主要考查全等三角形的性质与判定及等腰三角形的性质与判定,熟练掌握全等三角形的判定方法及等腰三角形的性质与判定是解题的关键三、解答题1、(1)见解析;(2),【解析】【分析】(1)根据垂直的定义得出BDF=CEF=90,根据AAS
20、可以推出BDFCEF,根据全等三角形的性质得出即可;(2)根据全等三角形的性质得出B=C,BD=CE,DF=EF,求出AB=AC,再根据全等三角形的判定定理推出ADFAEF,ABFACF,ACDABE【详解】证明:, 在和中(AAS) ,理由是:由(1)知:BFDCFE,所以DF=EF,B=C,BD=CE,根据HL可以推出ADFAEF,所以AD=AE,BD=CE,AB=AC,根据SAS可以推出ABFACF,根据HL可以推出ACDABE【考点】本题考查了全等三角形的性质和判定,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还
21、有HL2、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:,在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观3、4或14【解析】【分析】分情况讨论,如图所示:利用勾股定理分别求出的长,从而得出的长度【详解】解:在RtABD中,BD,在RtADC中,CD,故BCBDCD14;在RtABD中,BD,在RtADC中,CD,故BCBDCD4,BC的长为或4或14【考点】此题考查了勾股定理,求解关键是利用勾股定理分别求出BD和CD,注意不要漏解4、(1)150;(2)证明见解析【解析】【分析】(1)根据两直线平行,同位
22、角相等可得,再根据角平分线的定义求出,然后根据平角等于列式进行计算即可得解;(2)先求出,再根据对顶角相等求出,然后根据角平分线的定义即可得解【详解】解:(1),平分,;(2),平分【考点】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键5、(1)见解析;(2)3【解析】【分析】(1)根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题即可(2)根据画出的图形判断即可【详解】解:(1)所求作的ABC如图所示;(2)在图中再作出符合条件的点C,所以格点C的位置有3处,故答案为3【考点】本题考查了格点中画等腰三角形、等腰三角形的定义、勾股定理,能根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题是解答的关键